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These are my lecture notes for the HERA24 Conference of the European As-
tronomical Society “The Nature and the Dynamics of Structures Observed in
Galactic Disks” held at the Academy of Athens, Greece, September 15-20 2024
(http://astro.academyofathens.gr/hera24.html). I take full responsibility of
any mistakes that you might find. Should you have any questions or comments
please email mattiacarlo.sormani@gmail.com.

1 Introduction

Nuclear rings are remarkable structures found in the central regions of many barred
galaxies (Fig. 1). They have typical radii of few hundred of pc and are often sites
of vigorous star formation. They are promising reservoirs of gas for the feeding of
central black holes in active galactic nuclei. Our own Galaxy, the Milky Way, is a
barred galaxy and has a nuclear ring known as the “central molecular zone”.

The goal of these notes is to provide a self-contained account of the theory for
the formation of nuclear rings that we developed in [4]. The dynamical process by
which nuclear rings form turns out to be a surprisingly difficult problem in disk
dynamics. I will tackle this problem in an idealised form, ignoring the physical
effects that I believe are not essential.

2 Defining the problem

Nuclear rings are easy to form in simulations. This has been well-known since
the 1990s (see Fig. 2). The morphological similarity between the rings obtained
in simulations and real galaxies is striking (compare Fig. 1 with Fig. 2). Thus
there is little doubt that the simulations capture the essential physics involved.
However, watching rings forming in simulations does not necessarily mean that we
understand the dynamical mechanism by which they form. The goal of these notes
is to understand the ring formation mechanism at a more fundamental level.

The simplest simulations, such as those in Fig. 2, demonstrate that nuclear
rings form even if we ignore quite a lot of physics: the gas self-gravity, magnetic
fields, the vertical structure of the gas, star formation and their associated feed-
back (e.g., supernova explosions, stellar winds), and the multi-phase nature of the
interstellar medium are all absent in these simulations. All is really needed is gas
flowing in a non-axisymmetric barred gravitational potential, and a nuclear ring
will spontaneously form.

The equations of motion that govern the gas dynamics in these simple simula-
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Figure 1: Examples of barred galaxies with nuclear rings. The nuclear ring in each
galaxy is marked by a white square.
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Figure 2: Examples of nuclear rings in simple hydrodynamical simulations from
the literature. The nuclear rings are marked by a white square.

tions are:

∂tρ+∇ · (ρv) = 0 , (1)

∂tv + (v · ∇)v = −∇P
ρ
−∇Φ , (2)

where ρ(x, t) is the gas density, v(x, t) is the gas velocity, and P (x, t) is the
pressure. There are just the familiar continuity and Euler equations. The pressure
is assumed to be related to the density by a simple isothermal equation of state,
P = c2

sρ , where cs is a constant called the sound speed. The gas is assumed
to be 2D (i.e., razor-thin). The quantity Φ(x, t) is an external, rigidly-rotating
non-axisymmetric barred gravitational potential. This is generated by the stars
and dark matter that compose the galaxy. We ignore the contribution of the gas
self-gravity as the gas often contributes only a few % to the total mass budget.

Since simulations based on Eqs. (1)-(2) successfully reproduce nuclear rings, it
ought to be possible to understand their formation starting from these equations
in a more analytic way. This is the goal of the remainder of these notes. The
analyses in the next sections will be fairly general, but for the sake of concreteness
we will always use a specific model for the external gravitational potential Φ(x, t)
whenever we need to make a plot or provide numerical values. I hope this will
make the notes easier to follow. The next section describes this model and can be
skipped by the reader not interested in too much detail.

3 Galaxy model

The purpose of this section it to provide a simple yet reasonably realistic analytic
expression for the gravitational potential Φ(x, t) of a barred spiral galaxy. We
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Figure 3: The gravitational potential used in this notes. Top: the circular ve-
locity, defined as vc = (RdΦ0/dR)1/2. Middle: the angular velocity Ω and the
curves Ω ± κ/2, where Ω = vc/R and κ is the epicyclic frequency (Eq. 49). The
intersection of these curves with the horizontal line at Ωp gives the position of the
resonances, indicated by vertical dashed lines. The inner Lindblad resonance is at
RILR = 1.61 kpc, the corotation resonance at R = 5.5 kpc, and the outer Lindblad
resonance at ROLR = 9.39 kpc. Bottom: the quadrupole (Eq. 6).
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require it to include both the axisymmetric part generated by the galactic disc
and the dark matter halo and the non-axisymmetric part generated by the bar.

What is the simplest possible bar potential? Bars typically have the shape
of a cigar that lies in the plane of the galaxy. The figure of the bar rotates at
a rate called the pattern speed Ωp.1 We are only interested in the potential in
the midplane z = 0 since we approximate the gas layer as two-dimensional. Any
rigidly rotating potential in a plane can be expanded as:

Φ(R, θ, t) = Φ0(R) +
∞∑
n=1

Φn(R) cos [n(θ − Ωpt) + φn] (3)

where (R, θ) are polar coordinates in the rotating frame, φn are constants, and
Ωp is the angular rotation speed. The term Φ0(R) is called the monopole, Φ1(R)
the dipole, Φ2(R) the quadrupole, and so on. Bars are bi-symmetric around the
Galactic centre [i.e. their stellar density is the same at the four points (x, y),
(x,−y), (−x, y) and (−x,−y)], so Φn = 0 for n odd. N-body simulations of bars
show that the quadrupole (n = 2) is by far the most significant of the even-n terms,
while higher order terms rapidly get smaller. Thus to a good approximation a bar
potential can be written as

Φ(R, θ, t) = Φ0(R) + Φ2(R) cos [2(θ − Ωpt)] (4)

where without loss of generality we have chosen the origin of time so that φ2 = 0.
Let us now choose specific forms for Φ0(R) and Φ2(R). For the monopole, we

take the logarithmic potential

Φ0(R) =
v2

0

2
log
(
R2 +R2

c

)
, (5)

where v0 = 220 km s−1 and Rc = 0.05 kpc. The logarithmic potential is convenient
because the rotation curve is rising at small R and is flat at R � Rc, roughly
consistent with the rotation curves observed in many disk galaxies (see Fig. 3).
For the quadrupole, we take the following potential:2

Φ2(R) = −A(v0e)
2f (R/Rq) (6)

where A = 0.4 is a dimensionless parameter that quantifies the bar strength, e =
2.71[. . . ] is Euler’s number, v0 = 220 km s−1 is the same as in Eq. (5), Rq = 1.5 kpc
is a radial scalelength, and f is the following function:

f(x) =
3− e−2x (2x4 + 4x3 + 6x2 + 6x+ 3) + 4x5E1(2x)

20x3
, (7)

1Note that the invidual stars that compose the bar rotate at a faster rate than the pattern
speed, i.e. they rotate faster than the shape of the figure they collectively generate.

2The 3D density distribution that generates this potential is proportional to the Y 2
2 spherical

harmonic and drops exponentially in radius with scalelenght Rq/2.
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where E1(x) is the exponential integral function, a special function defined as

E1(x) =

∫ ∞
x

e−t

t
dt . (8)

This quadrupole has been shown to reproduce well those generated by N -body ex-
ponential bars. Finally, for the pattern speed we take the value Ωp = 40 km s−1 kpc−1.

To summarise, the gravitational potential used in the rest of the notes is given
by Eqs. (4), (5) and (6). These are the only equations from this section that we
will need for the remainder of the notes. Figure 3 gives an overview of the basic
properties of the potential.

4 Waves in a disc

The goal of this section is to understand the propagation and generation of waves
in a gas disc that is described by Eqs. (1)-(2). As we shall see below, this will be
important to understand the formation of nuclear rings.

Imagine a 2D axisymmetric rotating gas disc in equilibrium. What happens
if we perturb it a little bit by “touching” it here and there? This will generate
waves propagating through the disc, in a way similar a plucked cord generates
sound waves that propagate through air. Introducing a time-dependent rotating
non-axisymmetric barred potential has a similar effect: it stirs the gas disc like
a giant galactic spoon and generates waves that propagate through the disc. As
we will see below, these waves will be responsible for redistributing the angular
momentum and creating the accumulation of gas that we call a nuclear ring. Our
task in this section is to understand how waves are generated by the external bar
potential and how they propagate on top of the gas disc.

We will limit ourselves to study waves in the linear approximation. In practice,
this means that we will linearise the equations of motion around the equilibrium
state and neglect quadratic and higher order terms in the perturbed quantities.
This approximation is necessary to make the problem analytically tractable and
formally requires that the wave amplitude is “small”. In reality, waves excited by
the quadrupole described in Sect. 3, whose non-axisymmetric force reaches ∼ 5%
of the axisymmetric force at some radii, will not be small at all. However, such
non-linear waves are very difficult to study analytically. They can be studied us-
ing a simulation, but as described in Sect. 2 we then need to face the question of
how to extract basic physical understanding from it. Here we choose a different
approach. We focus on the linear regime aiming to gain insight on the basic dy-
namical processes. This will provide us with understanding at a more fundamental
level, but numerical values should not expected to be accurate when compared to
a full non-linear calculation.
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This section is structured as follows. In Sect. 4.1 we lay out the starting
equations and write them in cylindrical coordinates. In Sect. 4.2 we describe the
axisymmetric equilibrium discs that form the background on top of which waves
travel. In Sect. 4.3 we linearise the equations of motion around this equilibrium
state and reduce the problem of studying general perturbations to that of solving a
single second-order ordinary differential equation. In Sect. 4.4 we find approximate
solutions to this equation in the absence of a perturbing external potential. These
solutions describe “free density waves” propagating in the gas disc, analog to
sound waves propagating through air. In Sect. 4.5 we solve the same equation in
the presence of a forcing external potential, and study the generation of waves by
such external potential.

4.1 Basic equations

Our starting point are the continuity and Euler equations (1)-(2):

∂tρ+∇ · (ρv) = 0 , (9)

∂tv + (v · ∇)v = −∇P
ρ
−∇Φ . (10)

where ρ is the surface density, v = vxêx + vyêy is the velocity, P is the pressure,
and Φ(x, t) is the external gravitational potential given by Eq. (4). Although our
stated goal in Sect. 2 is to study an isothermal gas, we consider a slightly more
general polytropic equation of state since the calculations will be almost identical:

P = Kργ, (11)

where γ ≥ 1 and K is a constant. The isothermal case is recovered as γ = 1. To
simplify the calculations it is convenient to introduce the enthalpy h defined by:

∇h =
∇P
ρ

, (12)

substituting (11) into (12) and integrating we find:

h =

{
K
(

γ
γ−1

)
ργ−1 if γ > 1 ,

K log ρ if γ = 1 .
(13)
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Using (12), the equations of motion (9) and (10) can be expanded in polar coor-
dinates (R, θ) as:

∂tρ+
1

R
∂R (RρvR) +

1

R
∂θ (ρvθ) = 0 , (14)

∂tvR +
(
vR∂R +

vθ
R
∂θ

)
vR −

v2
θ

R
= −∂Rh− ∂RΦ , (15)

∂tvθ +
(
vR∂R +

vθ
R
∂θ

)
vθ +

vRvθ
R

= − 1

R
∂θh−

1

R
∂θΦ . (16)

4.2 Axisymmetric equilibrium state

The equilibrium axisymmetric solutions on top of which waves travel are as follows.
Assume Φ2 = 0 in Eq. (4) and look for steady-state solutions of Eqs. (14)-(16) of
the form:

ρ = ρ0(R), (17)

h = h0(R), (18)

v = Ω(R)R êθ. (19)

Substituting these into (14)-(16) and assuming steady-state and axisymmetry
(∂t = ∂θ = 0), we see that the continuity equation (14) and the azimuthal Euler
equation (16) are already satisfied, while the radial Euler equation (15) gives:

Ω2R =
d(h0 + Φ0)

dR
. (20)

When studying waves in the following sections, h0, Φ0 and Ω will be considered
prescribed functions of R that satisfy Eq. (20). Note that given Φ0(R), there for-
mally exists an equilibrium solution h0(R) for any arbitrary rotation profile Ω(R).
However not all possible profiles are physical. To avoid instability, the unperturbed
state must satisfy the Rayleigh stability criterion, which states that a necessary
and sufficient condition for the local axisymmetric stability of an inviscid differ-
entially rotating fluid disc is that the specific angular momentum monotonically
increases with R, i.e.3

d(R2Ω)

dR
> 0 . (Rayleigh criterion) (21)

In these notes we will consider two main types of density profiles:

3The Rayleigh criterion is equivalent to the condition that the epicyclic frequency is real
(κ2 > 0, see Eqs. 33 and 49).
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1. Constant density. This is simply:

ρ0(R) = ρ̄ = constant . (22)

2. Truncated disc density. This is given by

ρ0(R) =
ρ̄

2

[
1− a

(1 + a2)1/2

]
, (23)

where

a =
R−Redge

∆R
, (24)

This density is roughly constant at R � Redge, has a relatively sharp tran-
sition at Redge during which it drops at a much lower value, and is then
roughly constant again at R > Redge. Note that the edge cannot be too thin,
otherwise it would violate the Rayleigh criterion (21).

The quantity ρ̄ in both profiles is a constant that essentially defines the units used
for density. Physically meaningful results do not depend on the particular value
of this quantity since the equations of motion (9) and (10) are invariant under
density rescaling. Without loss of generality, we set ρ̄ = 1 hereafter.

4.3 General equation of linear disc dynamics

Here we linearise the equations of motion around the equilibrium state of the
previous section, and then reduce the problem of studying the most general linear
perturbation to solving a second-order ODE. We expand (14)-(16) around the
unperturbed state described in Sect. 4.2 as:

ρ = ρ0 + ρ1 , (25)

h = h0 + h1 , (26)

v = v0 + v1 , (27)

Φ = Φ0 + ∆Φ . (28)

Here, ∆Φ is the non-axisymmetric part of the potential, which we will eventually
put equal to the Φ2 term in Eq. (4) but for the moment we keep general. Substi-
tuting equations (25)-(28) into (14)-(16), the zeroth-order terms of the equilibrium
solution simplify, and linearising by keeping only first-order terms in the quantities
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with subscript 1, we obtain:

D

Dt

(
ρ1

ρ0

)
+

d log(Rρ0)

dR
vR1 + (∂RvR1) +

1

R
(∂θvθ1) = 0 , (29)

DvR1

Dt
− 2Ωvθ1 = −∂R [h1 + ∆Φ] , (30)

Dvθ1
Dt

+ 2BvR1 = − 1

R
∂θ [h1 + ∆Φ] , (31)

where we have defined the convective derivative of the unperturbed state

D

Dt
= ∂t + Ω∂θ , (32)

and the Oort parameter

B(R) = Ω +
R

2

dΩ

dR
. (33)

Substituting Eq. (25) into (13) we can relate h1 to ρ1:

h1 = c2
s

(
ρ1

ρ0

)
(34)

where we have introduced the sound speed of the unperturbed medium:

c2
s = γKργ−1

0 . (35)

Eq. (34) is valid for γ ≥ 1 (γ = 1 corresponds to the isothermal case).
Equations (29)-(31) govern the time evolution of general linear perturbations.

Given initial conditions ρ1(x, t = 0), vR1(x, t = 0), vθ1(x, t = 0), these equations
completely determine the subsequent evolution. We can simplify these equations
further using the superposition principle. The coefficients of the various terms of
these equations do not depend on θ. This means that if we Fourier-expand the
angular part, different modes will evolve independently without mixing with each
other. We can solve for each mode separately and then put together the results at
the end if needed. Therefore, without loss of generality, we write:

ρ1 = ρ̃1(R) exp[i(mθ − ωt)], (36)

v1R = ṽ1R(R) exp[i(mθ − ωt)], (37)

v1θ = ṽ1θ(R) exp[i(mθ − ωt)], (38)

h1 = h̃1(R) exp[i(mθ − ωt)], (39)

∆Φ = ∆Φ̃(R) exp[i(mθ − ωt)], (40)

where ρ̃1, ṽ1R etc. are complex numbers, and the “physical” quantity is the real
part. In these notes, we will only be concerned with m = 2, corresponding to the
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quadrupole term in Eq. (4). With the substitutions (36)-(40), we have ∂t = −iω
and ∂θ = im. We define the pattern speed of each mode as:

Ωp =
ω

m
. (41)

This is the angular frequency with which each mode appears to rotate, as can be
understood by noting that

ei(mθ−ωt) = eim(θ−Ωpt) . (42)

In these notes, Ωp will always coincide with the pattern speed of the bar potential
(4). Only modes at this frequency and m = 2 can be excited by the external
potential Φ2 in the linear approximation.

Hereafter, we drop the ˜ symbol in all equations to avoid cluttering. Substitut-
ing (36)-(40) into (29)-(31) we obtain:

im (Ω− Ωp)

(
ρ1

ρ0

)
+

d log(Rρ0)

dR
vR1 +

dvR1

dR
+
im

R
vθ1 = 0 , (43)

im (Ω− Ωp) vR1 − 2Ωvθ1 = − d

dR
[h1 + ∆Φ] , (44)

im (Ω− Ωp) vθ1 + 2BvR1 = −im
R

[h1 + ∆Φ] , (45)

Isolating vR1 and vθ1 from (44) and (45) we find:

vR1 = −im
D

(
2Ω

R
+ (Ω− Ωp)

d

dR

)
[h1 + ∆Φ] (46)

vθ1 =
1

D

(
m2(Ω− Ωp)

R
+ 2B

d

dR

)
[h1 + ∆Φ] (47)

where we have defined

D = κ2 −m2(Ω− Ωp)2, (48)

κ2 = 4BΩ (49)

The quantity κ is called the epicyclic frequency. It is the frequency at which
a fluid parcel in circular orbit that is radially displaced will oscillate. The points
where D = 0 define the Lindblad resonances.4 These are the radii at which the
radial oscillation frequency κ is equal to the “forcing frequency” m(Ω − Ωp) seen
by a particle. We call inner Lindblad resonances (ILR) those that occur where

4Note that the position D = 0 also depends on the unperturbed density profile ρ0 because of
the contribution from the pressure term h0 to Ω in Eq. (20).
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Ω > Ωp, and outer Lindblad resonances (OLR) those that occur where Ω < Ωp.
The point where Ω = Ωp defines the corotation resonance (CR). The middle
panel in Fig. 3 shows where the resonances occur for the potential described in
Sect. 3. Fig. 4 plots κ and D for the same potential.

Now we substitute (46) and (47) into (43) and use (34) to eliminate ρ1. We
obtain an equation in the variable h1:

d2h1

dR2
+ 2H(R)

dh1

dR
+W (R)h1 = F (R) (50)

where

H(R) =
1

2

d

dR

[
log

(
Rρ0

|D|

)]
, (51)

W (R) = C(R)− D(R)

c2
s

, (52)

C(R) =

(
2Ω

R(Ω− Ωp)

)
d

dR

[
log

(
ρ0Ω

|D|

)]
− m2

R2
, (53)

F (R) = −
{

d2

dR2
+ 2H(R)

d

dR
+ C(R)

}
∆Φ(R) . (54)

Eq. (50) coincides with Eq. (13) of [3]. It is a second order ordinary differential
equation with non-constant coefficients H(R) and W (R). The term F (R) is a
forcing term. Note that H(R) and W (R) diverge where (Ω − Ωp) = 0 and where
D = 0, i.e. at the corotation and Lindblad resonances.

In order to eliminate the first order derivative from Eq. (50), it is convenient
to define a new variable g1 such that

g1(R) = exp

[∫ R

H(s) ds

]
h1(R) =

(
Rρ0

|D|

)1/2

h1 . (55)

Substituting Eq. (55) into Eq. (50), one finds

d2g1

dR2
+K2(R)g1 = Q(R) , (56)

where

K2(R) = W −H2 − dH

dR
(57)

Q(R) =

(
Rρ0

|D|

)1/2

F (R) . (58)
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Eq. (56) is the fundamental equation that governs linear modes in the disc. The
only approximation made to derive it is the linear approximation. A good por-
tion of the remainder of these notes will be spent finding approximate solutions
of this equation. We will see below (Eq. 69) that there is a conserved quantity
associated with this equation, which physically is interpreted as the flux of angular
momentum. To follow the calculations in the following sections more intuitively,
it might be useful to note that Eq. (56) is like that of a forced harmonic os-
cillator, mẍ + k2(t)x = q(t) with a time-dependent spring constant k(t) and a
time-dependent external force q(t) (in this analogy, t replaces R, m is the mass
attached to the spring).

There are two types of points where Eq. (56) requires special attention:

• Turning points. These are the points R? where K2(R?) = 0. At these points,
K2 changes sign and the character of the solutions changes from oscillatory
to exponential.

• Singular points. These are points where K(R) diverges. As can be seen
from Eqs. (57) and (51)-(54), this happens at the Lindblad and Corotation
resonances.

Figure 5 shows the coefficients of Eq. (56) for the galaxy model in Sect. 3, for a
uniform and a truncated disc profile and for sound speed cs = 10 km s−1. In the
region relevant for the formation of nuclear rings (R < 2 kpc) there is one turning
point R? and one singular point at RILR, with R? < RILR. As we shall discuss
below, R? is where the medium becomes absorbing and leading waves incident
from R < R? are reflected into trailing waves that subsequently travel inwards.
The position of R? depends on both the sound speed cs and the shape of the
unperturbed density profile ρ0(R). In the limit cs → 0 we have R? → RILR.
However, for a finite value of the sound speed, the two points are distinct.

4.4 Free waves

Free perturbations in the fluid disc are described by Eq. (56) with Q = 0 (no ex-
ternal forcing). This is a second order differential equation, so it has two linearly
independent solutions. We can think of these two solutions as are a more compli-
cated version of the two sound waves at a given frequency that can propagate in
a uniform medium.

In general, Eq. (56) is hard to solve exactly. Approximate solutions can be
found using the WKB method. Appendix A presents a self-contained exposition
of this method. The general WKB solution for an equation of type (56) is given

16
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Figure 4: Top: the epicyclic frequency κ given by Eq. (49) for the gravitational
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Figure 5: Top: the wavenumber K(R) i(Eq. 56). Full black line: for constant
density profile. Dashed black line: for a truncated disc profile (Eq. 23). Cyan line:
Lin-Shu approximation (Eq. 63). Red line: approximation near the ILR (Eq. 90).
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right panel for R < 2 kpc. All panels assume a sound speed cs = 10 km s−1.
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by Eq. (147), which adapted to the present notation reads:

g1(R) =
C1√
K(R)

exp

[
i

∫ R

R0

K(s)ds

]
+

C2√
K(R)

exp

[
−i
∫ R

R0

K(s)ds

]
, (59)

where C1 and C2 are arbitrary complex constants and R0 is an arbitrary radius.
The two terms on the right-hand side of Eq. (59) represent two waves travelling

in opposite directions, similar to the two sound waves that are possible in a uniform
medium at a given frequency (to see this, reattach the eimθ−iωt). The quantity K is
a radius-dependent wavenumber. When K2 > 0, the solution (59) has oscillatory
character and waves can travel, when K2 < 0 it has exponential character and the
medium is absorbing. Fig. 5 shows that travelling waves can exist essentially only
inside the ILR or outside the OLR.

Equation (57) implicitly contains ω, and therefore for fixed R this expression
can be seen as a dispersion relation K = K(ω) (Fig. 6).

The two waves defined by Eq. (59) typically have a spiral shape. This can be
seen reattaching the eimθ term to (59). Taking for example the C1 wave, we see
that the location of the maxima of g1 (and therefore of density ρ1) as a function
of θ for fixed R and t occur along lines∫ R

R0

K(s)ds+mθ = constant (mod 2π) (60)

where n is an integer. The curve defined by Eq. (60) in the plane (R, θ) typically
traces a spiral shape (try for example K =constant). The sign of K determines
whether the wave is leading or trailing. In our case, the C1 wave is leading, while
the C2 wave is trailing. With a little bit of geometry (see for example Chapter 6
of [1]) one can find that the pitch angle (i.e., the angle between the tangent to the
arm and the circle R =constant) is:

cot i =
|K|R
m

. (61)

What is the range of validity of the WKB approximation? The WKB approxima-
tion is expected to work well when the following parameter is small (see Eq. 139):

ε =

∣∣∣∣dK/dRK2

∣∣∣∣ , (62)

Thus, the WKB approximation works when K varies ‘slowly’. This means that
Eq. (59) represent rapidly oscillating waves whose amplitude is slowly modulated
by the term K−1/2. Figure 7 plots the parameter (62) for our galaxy model. It
becomes large near the turning points and the resonances. At these points the
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Figure 6: The dispersion relation K(ω) at R = 1 kpc for our galaxy model. The
vertical dashed line indicates the frequency ω = 2Ωp of the bar potential. The
frequencies at which K diverges are those for which the ILR, CR and OLR would
be at R = 1 kpc (resonances move inwards as frequency is increased). We assumed
cs = 10 km s−1 and constant unperturbed density ρ0(R) = 1.

WKB approximation fails. The WKB approximation also fails near sharp edges of
ρ0, because dK/dR becomes large. Figure 8 compares an exact (numerically cal-
culated) and a WKB solution of Eq. (56), and shows that the WKB approximation
works exceptionally well at R < R?, but breaks down near R = R?.

The WKB approximation used here is not completely equivalent to the more
well-known Lin-Shu approximation. The Lin-Shu dispersion relation in the absence
of self-gravity (G = 0) is given by (Eq. 6.55 of [1]):

K2
Lin-Shu = −D

c2
s

, (63)

where D is given by Eq. (48). The top of Fig. 5 compares the Lin-Shu dispersion
relation (cyan line) with the dispersion relation given by Eq. (57). The two differ
mainly around the resonances. Differences become larger for larger values of the
sound speed cs, because the Lin-Shu dispersion relation assumes very small cs,
while the dispersion relation (57) takes into account the effect of finite sound speed.
Indeed, in the limit of vanishing sound speed we recover the Lin-Shu dispersion
relation from our relation (57). This can be shown by noting that in this limit
W (R) ' −D/c2

s (Eq. 52), while H2 � W and dH/dR� W (Eq. 57).
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4.4.1 Group velocity

The crests of the waves described by Eq. (59) travel at a phase velocity (to see
this, reattach the eiωt), defined by

vp =
ω

K
(64)

However, it is well known if waves are dispersive (i.e., ω/K is not constant as a
function of ω at a given R, as in our case, see Fig. 6), then the envelope shape of
a wave packet travels with the group velocity:

vg =
∂ω

∂K
(65)

The group velocity is also the velocity at which quantities such as energy and
angular momentum are transported along the wave. Figure 9 plots the phase
and group velocities for cs = 10 km s−1. We can see a few things. At R < RILR

the group velocity of trailing waves (C1 6= 0 and C2 = 0) is negative, meaning
that these waves travel inward. Leading waves instead travel outwards. The
phase and group velocities have opposite signs, but the latter is the ‘real’ direction
of propagation of wave packets. The group velocity loses meaning and becomes
imaginary between the ILR and the OLR, when the medium becomes absorbing.
At R > ROLR, trailing (leading) waves propagate outwards (inwards), and the
phase and group velocity have the same sign.

The cyan line compares our group velocity with that obtained from the Lin-Shu
dispersion relation (63) (see Equation 20 of [3]):

cg;Lin-Shu = − KLin-Shuc
2
s

m (Ω− Ωp)
. (66)

4.4.2 Angular momentum flux of WKB waves

Density waves transport angular momentum. This ability will be important for
the formation of nuclear rings. The general equations that express angular mo-
mentum conservation in fluid discs are reviewed in Appendix B. The wave angular
momentum is given by

Fw = R2ρ0

∫ 2π

0

dθvθ1vR1 . (67)

Using Eqs. (46) and (47), we can rewrite this, after some algebra, as:

Fw = Re

{
πRρ0im

D

[
(Φ1 + h1)∗

d

dR
(Φ1 + h1)

]}
. (68)
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where ∗ denotes the complex conjugate. Setting Φ1 = 0 (free waves) and using
(55) this becomes

Fw = Re

{
iπmg∗1

dg1

dR

}
sgn (D) . (69)

To evaluate the flux of angular momentum associated with the WKB waves (Eq. 59),
we substitute Eq. (59) into Eq. (69). We obtain:

Fw = mπ
(
|C2|2 − |C1|2

)
sgn (D) . (70)

Since C1 and C2 are constant for a given WKB wave, this equation shows that
the flux of angular momentum is constant with R. In fact, the quantity (69)
is conserved exactly by Eq. (56), not just in the WKB approximation (you can
prove this by direct differentiation and using 56). The angular momentum flux
is also the adiabatic invariant associated with the WKB solution (Appendix A).
Eq. (70) shows that the trailing (leading) wave has Fw > 0 (Fw < 0). Thus,
trailing (leading) waves transport angular momentum outwards (inwards).

4.5 Forced waves

An oscillating external potential can generate waves in a similar way a vibrating
rod can generate sound waves in air. If the potential oscillates with a given fre-
quency ω,5 the excited waves will have the same frequency ω in the linear regime.
The wavelength of waves at this frequency is determined by the dispersion relation
to be λ = 2π/K(ω) (top panel of Fig. 5).6 What is the amplitude of the generated

5ω is related to the pattern speed of the external potential by Eq (41).
6From this we can already tell their pitch angle generated by the bar potential, Eq. (61).

23



waves? The coupling between the external forcing and the fluid will be strongest
when λ is of the same order of the typical scalelength of the external forcing.
Therefore the excited waves will be largest when this condition is satisfied. In ap-
pendix C we present an exactly solvable toy problem that illustrates this concept
in more detail with a concrete example.

The external forcing in our problem is represented by F (or equivalently Q)
on the right-hand side of Eq. (50) (or 56). Waves will be effectively excited when-
ever the typical scalelength of the forcing L ∼ F/(dF/dR) is comparable to the
wavelength λ = 2π/K. However, as can be seen in Fig. 5, at most locations we
have λ � L, so the coupling is weak and the the excited waves negligibly small.
This is because the forcing F varies on the scale of the barred potential ∆Φ and of
the background state (Eq. (7)), and both of these typically vary on a scalelength
L ∼ R, while K � R for small sound speeds.

There are two exceptions in which the forcing can efficiently couple to the
waves:

• Near the resonances. In the vicinity of a resonance, λ = 2π/K becomes
large (more precisely, it diverges at the turning pointsR?, top panel in Fig. 5).
Thus, we can have λ ∼ R, and the forcing can couple to the waves.

• At sharp edges. When ρ0 changes abruptly, the forcing F varies on the
same scale as ρ0 (see for example the ‘bumps’ in Q at the sharp edge of ρ0,
dashed line in the middle panel of Fig. 5). If this scale is small enough, it
can be of the same order of λ, and the forcing can couple to the waves.

In this section, we will solve the non-homogeneous Eq. (56) (or equivalently 50)
with the forcing term included. In Sect. 4.5.1 we solve it away from resonances
and sharp edges. In Sect. 4.5.2 and 4.5.3 we solve it near resonances and sharp
edges, and calculate the amplitude of the waves excited at these locations.

4.5.1 Non-wave solution away from resonances and sharp edges

Away from resonances and sharp edges, the following is an approximate particular
solution of Eq. (56):

gQ(R) =
Q

K2
. (71)

To see the condition under which this solution is valid, we substitute g1 = gQ in
Eq. (56), and impose that the first term on the left-hand side is small, i.e. d2g1/dR

2 �
K2g1. This gives the following condition:

d2

dR2

(
Q

K2

)
� Q . (72)
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This condition essentially states that the forcing should vary slowly with respect
to the wavelength. This is verified away from resonances and sharp edges (Fig. 5).
This condition is more accurately verified at low sound speed, since K → ∞ as
cs → 0 at fixed R (see Eq. 57).

Eq. (71) represents a non-wave solution which is the analogue of the black
dashed solution for the toy problem in Fig. 12 in Appendix C an is equivalent
to Eq. (15) of [3]. In the analogy between (56) and the harmonic oscillator, this
solution corresponds to following the “instantaneous” equilibrium position of the
oscillator as the external force slowly varies. It is be valid when the “force” Q(R)
varies slowly enough compared to the frequency of the harmonic oscillator.

The full solution of the non-homogeneous (56) away from resonances and sharp
edges is the sum of the particular solution (72) and of the WKB homogeneous
solution (59):

g1(R) =
C1√
K(R)

exp

[
i

∫ R

R0

K(s)ds

]
+

C2√
K(R)

exp

[
−i
∫ R

R0

K(s)ds

]
+ gQ(R)

(73)
In the next two sections we calculate the approximate solutions near the resonances
and at sharp edges and “match” these to the solution (59).

4.5.2 Excitation of waves near the Lindblad resonances

To solve Eq. (56) near the Lindblad resonances, we introduce the dimensionless
variable

x =
R−RILR

RILR

. (74)
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Figure 10: Schematic diagram of where the various approximate solutions of
Eq. (56) apply. (1) denotes regions away from resonances and sharp edges where
the solution is well approximated by (73). (2) denotes the region near the edge
where Eq. (127) is a good approximation. (3) denotes the region within approxi-
mately one wavelength λ from the ILR, where the solution (122) is a good approx-
imation. The shaded “matching regions” denote where two neighbouring solutions
are simultaneously good approximations and we can apply the method of matched
asymptotic expansions.“Stage 1” and “Stage 2” denote the regions corresponding
to the two stages of our picture for ring formation described in Sect. 5.
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We approximate the coefficients of Eqs. (50) and (56) for x� 1 and cs/ΩR� 1:

D ' Dx (75)

H ' −
(

1

RILR

)
1

2x
(76)

C ' −
(

1

RILR

)2
α

x
(77)

W ' −
(

1

RILR

)2 [α
x

+ βx
]

(78)

F '
(

1

RILR

)2
ψ

x
(79)

Q ' sgn (x)

(
1

RILR

)2
γψ

|x|3/2 (80)

K2 ' −
(

1

RILR

)2 [
α

x
+ βx+

3

4x2

]
(81)

where we have defined the following constants

D =

[
dD

dR
R

]
RILR

(82)

α =

[
2Ω

(Ω− Ωp)

]
RILR

(83)

β =
DR2

ILR

c2
s

(84)

ψ =

[
R∆Φ′ +

(
2Ω

(Ω− Ωp)

)
∆Φ

]
RILR

(85)

γ =

(
Rρ0

D

)1/2

(86)

Thus Eqs. (56) becomes

d2g1

dx2
−
[
α

x
+ β x+

3

4x2

]
g1 = sgn (x)

γψ

|x|3/2 , (87)

while Eq. (50) becomes

d2h1

dx2
− 1

x

dh1

dx
−
[α
x

+ βx
]
h1 =

ψ

x
. (88)
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These two equations are equivalent, and can be transformed into each other using
the change of variables (55), which approximated near the resonance is

g1 = sgn(x)
γ

|x|1/2h1 . (89)

We wrote both versions of the equation as from (87) it is easier to see that the
term α/x can be neglected, while Eq. (88) will be easier to solve near the ILR (h1

does not diverge has an extra factor g1 has an extra factor 1/x1/2).
Let us first check that we can neglect the α/x term. Consider the three terms

in the square parentheses in Eq. (87). Very close to x = 0, the 3/(4x2) term clearly
dominates over the other two as it tends to ∞ faster. Now consider the other two
terms. In our problem, α is of order unity, while β is of order of the circular
velocity divided by the sound speed, ΩR/cs, so |α| � |β|. For example, for the
galaxy model in Sect. 3, we have |α| ' 3 and |β| ∼ 800 assuming cs = 10 km s−1.
The consequence is that as we move away from x = 0, the term βx becomes
comparable to 3/(4x2) before the α/x term. Thus, the α/x is always subdominant
compared to either of the other two terms, and can be neglected. Thus we can
approximate the wavenumber (81) as

K2 = −
(

1

RILR

)2 [
βx+

3

4x2

]
(90)

and Eqs. (87)-(88) as:

d2g1

dx2
−
[
βx+

3

4x2

]
g1 = sgn (x)

γψ

|x|3/2 , (91)

d2h1

dx2
− 1

x

dh1

dx
− βxh1 =

ψ

x
. (92)

As a sanity check, the red line in the top panel of Fig. 5 compares the approxi-
mated wavenumber given by (90) with the full equation (57), and shows that the
approximation works very well.

Now we solve Eq. (92). First, we eliminate β with the substitution:7

x = t/β1/3 (93)

h1 = z/β2/3 (94)

Eq. (92) becomes

z′′ − 1

t
z′ − tz =

b

t
(95)

7This t is not time!
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where b = β1/3ψ. It turns out that this equation is closely related to a well-studied
equation known as the Airy equation. The general solution of the homogeneous
Eq. (92) (i.e. with ψ = 0) is

z(t) = C1 Ai′(t) + C2 Bi′(t) (96)

where Ai and Bi are special functions known as the Airy functions, which have
the following fundamental properties:

Ai′′ = tAi (97)

Bi′′ = tBi (98)

their values in zero are

Ai(0) =
1

32/3 Γ
(

2
3

) , Ai′(0) = − 1

31/3 Γ
(

1
3

) , (99)

Bi(0) =
1

31/6 Γ
(

2
3

) , Bi′(0) =
31/6

Γ
(

1
3

) . (100)

where Γ is the Gamma function. Using these properties we can calculate the
Wroskian of the Airy functions and their derivatives to be

WAi = Ai Bi′−Ai′ Bi =
1

π
(101)

WAi′ = Ai′ Bi′′−Ai′′ Bi′ = − t
π

(102)

Now that we have the general solution of the homogeneous equation, we can use
the method of variation of parameters to find a particular solution of the non-
homogeneous equation.8 Applying this method to Eq. (95) and using the particular
solutions (96) with Wroskian (102) we obtain the following particular solution:

z0(t) = πb

[
Ai′
∫

Bi′

t2
dt− Bi′

∫
Ai′

t2
dt

]
(105)

8The method of variation of parameters allows one to find the solution of a non-homogeneous
equation once the solution of the homogeneous equations are known. Given the following ODE:

p(t)y′′ + q(t)y′ + r(t)y = g(t) (103)

and given that y1(t) and y2(t) are solutions of the homogeneous equation, then a particular
solution of the non-homogeneous equation is:

y0(t) = −y1
∫

y2g(t)

W (y1, y2)
dt+ y2

∫
y1g(t)

W (y1, y2)
dt (104)

where W (y1, y2) = y1y
′
2 − y′1y2 is the Wroskian.
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Integrating by part and using properties (97) we can write∫
Ai′

t2
dt = −Ai′

t
+

∫
Ai′′

t
dt (106)

= −Ai′

t
+

∫
Ai dt (107)

And analogously ∫
Bi′

t2
dt = −Bi′

t
+

∫
Bi dt (108)

Substituting Eqs.(107) and (108) into (105) we find

z0(t) = πb

[
Ai′
∫

Bi dt− Bi′
∫

Ai dt

]
(109)

This expression does not look too bad. In fact, it turns out that the expression
within parentheses in Eq. (109) is the derivative of a function known as the Scorer
function, defined as:

Hi(x) = Bi(x)

∫ x

−∞
Ai(t) dt− Ai(x)

∫ x

−∞
Bi(t) dt (110)

So we can rewrite (109) as

z0(t) = −πbHi′(t) (111)

The general solution to Eq. (95) can then be written

z(t) = C1 Ai′(t) + C2 Bi′(t)− πbHi′(t) (112)

We now need to find C1 and C2. To do this, we see how the solution behaves for
|t| → ∞. Using the NIST digital library of mathematical functions9 we find the
following series expansions for t→ +∞:

Hi′(t) ∼ e
2t3/2

3 t1/4√
π

; t→ +∞ (113)

Ai′(t) ∼ e−
2t3/2

3 t1/4√
π

; t→ +∞ (114)

Bi′(t) ∼ e
2t3/2

3 t1/4√
π

; t→ +∞ (115)

9https://dlmf.nist.gov
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If we require that the solution does not explode exponentially at t = +∞ then we
need to set C2 = πb in the homogeneous solution (Eq. 96).

Next we look at the series expansions around t→ −∞. We have

Hi′(t) ∼ 1

πt2
; t→ −∞ (116)

Ai′(t) ∼ −(−t)1/4

π1/2
cos

(
2

3
(−t)3/2 +

π

4

)
; t→ −∞ (117)

Bi′(t) ∼ (−t)1/4

π1/2
sin

(
2

3
(−t)3/2 +

π

4

)
; t→ −∞ (118)

Setting C2 = πb as found above, the solution at t = −∞ can be written:

z(t) ∼ iπbα(t)

{
iC1

πb
cos[φ(t)]− i sin[φ(t)]

}
− b

t2
; t→ −∞ (119)

where

φ(t) =
2

3
(−t)3/2 +

π

4
, (120)

α(t) =
(−t)1/4

π1/2
. (121)

To find C1, the appropriate boundary conditions are “radiation” boundary condi-
tions. Causality requires that waves propagate away from the region where they
are generated (a solution in which waves come towards it would require a source
of waves outside this region). The direction of propagation of the waves can be
understood from their group velocity as described in Sect. 4.4.1. Since inside the
ILR trailing waves move inwards and leading waves move outwards (Sect. 4.4.1),
we require that at t = −∞ our solution resembles a trailing wave. Eq. (119) looks
like a trailing wave if we choose C1 = −iπb. This is an informal guess for now but
we will verify in a moment that it is correct. So the final solution to our problem
with the correct boundary conditions is:

z(t) = πb [−iAi′(t) + Bi′(t)− Hi′(t)] (122)

To verify that everything is consistent, we match this solution at t→ −∞ to the
trailing free WKB density waves studied in Sect. 4.4. This will allow us to find the
angular momentum carried by the excited wave. The solution (122) at t = −∞ is

z(t) ∼ iπbα(t)eiφ(t) − b

t2
; t→ −∞ (123)
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Using (89), (93), (94), (120), (121) we can rewrite this as

g1(x) ∼ − iγψπ1/2

β1/4|x|1/4 e
i( 2

3
|x|3/2β1/2+π

4 ) − γψ

|x|5/2β ; x→ −∞ (124)

The second term on the RHS corresponds to the non-wave solution (71) where Q
is approximated as in Eq. (80), and K ' βx consistent with (90) at large |x|. The
first term corresponds to the trailing WKB wave in Eq. (59) where again K ' βx
and |C1| = π1/2γψ (note that the dependence on x is the same!). This verifies that
the solution (122) asymptotically reduces to the sum of the WKB solution and the
non-wave solution (71). The angular momentum flux carried by this wave can be
calculated using Eq. (70):

Fw = mπ2γ2ψ2 (125)

This is the famous formula for the torque exerted by an external potential at the
Lindblad resonance found by [3] (their Eq. 46). Although we calculated it for the
case without self-gravity, these authors have shown that it is valid in the case with
self-gravity as well.

4.5.3 Excitation of waves near sharp edges

Consider an edge at Redge of width Rout−Rin = ∆R, where Rin and Rout > Rin are
the two extremities of the region over which the edge extends (see Fig. 10). The
shape of the edge can be arbitrary. The edge is assumed to be thin but not too thin,
otherwise the unperturbed density profile would violate the Rayleigh criterion (21)
and become unstable. In practice, considering the Lin-Shu approximation (Eq. 63)
this means that the edge should not be thinner than approximately one wavelength,
λ = 2π/K.

At R < Rin and R > Rout, the solution of Eq. (56) can be approximated by
(73). We assume that waves are excited only near the edge, i.e. at Rin < R < Rout.
As in the previous section, we impose radiation boundary conditions. This means
that at R < Rin we should have only the trailing wave and at R > Rout only the
leading wave. Therefore we write:

g1(R) =


Cin√
K(R)

exp
[
i
∫ R
R0
K(s)ds

]
+ Q

K2 , for R < Rin ,

Cout√
K(R)

exp
[
−i
∫ R
R0
K(s)ds

]
+ Q

K2 , for R > Rout .
(126)

The constants Cin and Cout will be determined by solving Eq. (56) near the edge
and matching the two solutions.

Near the edge, the forcing term Q varies rapidly, violating condition (72), and
the equilibrium solution (71) fails (dashed line in the middle panel of Fig. 5).
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To solve Eq. (56) near the edge, we proceed as follows. We assume that K is
approximately constant across the edge, i.e. in the range Rin < R < Rout. This
is justified by our assumption that the edge is relatively sharp (see also the black
dashed line in the top panel of Fig. 5). Under this assumption, Eq. (56) can be
solved using the method of variation of parameters. The general solution is:

g1(R) = A1e
iKR + A2e

−iKR+

− ieiKR

2K

∫ R

R0

Q(s)e−iKsds+
ie−iKR

2K

∫ R

R0

Q(s)eiKsds , (127)

where K ' K(Rin) ' K(Rout). The constants A1 and A2 are determined by the
condition that the solution contains only waves travelling inwards at radii R < Rin,
and waves travelling outwards at radii Rout < R. These calculations are reported
in Appendix D.1. We find:

A1 =
Qout

2K2
e−iKRout +

i

2K

∫ Rout

R0

Q(s)e−iKsds (128)

A2 =
Qin

2K2
eiKRin − i

2K

∫ Rin

R0

Q(s)eiKsds , (129)

where Qout = Q(Rout) and Qin = Q(Rin).
Both Eq. (126) and Eq. (127) are valid solutions of Eq. (56) in a neighbourhood

of Rin and in a neighbourhood of Rout (shaded regions in Fig. 10). Matching these
two solutions gives (see Appendix D.1):

Cin = −C∗out =
ieiKR0

2K1/2

∫ Rout

Rin

Q(s)e−iKsds+

+
Qout

2K3/2
eiK(R0−Rout) − Qin

2K3/2
eiK(R0−Rin) . (130)

The coefficients Cin and Cout give the amplitude of density waves excited at the
edge. It can be shown that the absolute values |Cin| and |Cout| are independent
of R0, as they should since the angular momentum flux at the edge should be
independent of this arbitrary radius.

The rapid variation of Q near the edge is what generates density waves. The
coupling between the forcing term Q and the density waves is expected to be max-
imum when the scale-length over which Q varies is comparable to the wavelength
of the waves λ = 2π/K (similarly to the toy problem in Appendix C), i.e. when
∆R ' λ.

We can use Eqs. (70) and (130) to calculate the angular momentum flux carried
by the waves excited at the edge. To obtain a closed formula it is necessary to
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make some further assumptions on the edge. If the edge of the disc is marginally
stable to the Rayleigh criterion (21), one has |Rout − Rin| ∼ cs/Ω ∼ 1/K. This
is the sharpest edge that can be constructed without making the unperturbed
density distribution unstable. Then the exponential exp(−iKs) in the integral of
Eq. (130) is nearly constant. As shown in Appendix D.2, in this case Eq. (130)
reduces to:

|Cin| ' |Cout| '
[(

Rρ0

K |D|

)1/2 ∣∣∣∣dΦ1

dR
+

2Ω

Ω− Ωp

Φ1

R

∣∣∣∣
]
R=Redge

. (131)

Note that this is essentially the impulse approximation, i.e. we have assumed that
the force Q gives an instantaneous “kick” at R = Redge. Using Eq. (70), the flux
of angular momentum of waves excited at a sharp edge is then

Fw ' mπ

[(
Rρ0

K |D|

)(
dΦ1

dR
+

2Ω

Ω− Ωp

Φ1

R

)2
]
R=Redge

(132)

Eq. (132) is correct when the distance of the edge from the inner Lindblad res-
onance is larger than approximately one wavelength, i.e. K|Redge − RILR| �
1. At |Redge − RILR| = λ/(2π2) = 1/(πK) and approximating D(R) ' (R −
RILR)(dD/dR), as appropriate near the ILR where D vanishes, Eq. (132) becomes
identical to Eq. (125) which gives the flux of angular momentum of waves excited
at the resonance.

5 The formation of nuclear rings

We are finally ready to put everything together and describe our picture of the
formation of nuclear rings. For simplicity, we imagine to start with a uniform
density distribution ρ0 extending everywhere. The formation of the ring can be
schematically divided into two stages, which depend on the distance of the edge
of the gas disc from the ILR. The regions corresponding to the two stages are
schematically marked in Fig. 10.

We stress that this picture is developed using the linear regime, but the actual
process is very non-linear. Thus, the quantitative results are most certainly not
accurate. The reason we do it this way is to gain a deeper understanding of the
dynamical mechanisms at play.

5.1 First stage (|Redge −RILR| . λ)

In the first stage, a trailing spiral wave is excited near the ILR by the external bar
potential. This is the regime analysed in Sect. 4.5.2. The wave travels inwards
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but for realistic strengths of the bar potential it very quickly becomes non-linear
and develops into a shock. The wave then dissipates, depositing its (negative)
angular momentum into the gas disc (i.e., removing angular momentum from the
gas disc).10 This reduces the angular momentum of the disc, causing the gas to
move inward. A gap opens around the ILR. The gas accumulating at the inner
edge of this gap starts forming the nuclear ring.

The width of the gap opened in the first stage is the range of validity of the
calculations of Sect. 4.5.2, which is approximately one wavelength, i.e. |Redge −
RILR| ∼ λ. Using the Lin-Shu approximation11 (Eq. 63) and approximating D '
(R−RILR)(dD/dR) (recall that D = 0 at the resonance) we have λ ∼ cs/|D|1/2 ∼
cs/|(Redge − RILR)(dD/dR)|1/2 and therefore |Redge − RILR| ∼ |c2

s/(dD/dR)|1/3 ∼
(cs/v0)2/3RILR. The size of the gap is therefore much smaller than the radius of
the resonance, and increases for increasing sound speed.

The velocity at which the edge of the gap moves in this phase can be estimated
by dividing the flux of angular momentum of the waves, Fw, by the amount of
angular momentum per unit radius in the unperturbed disc, 2πρ0R

3Ω:

dRedge

dt
= −

[
Fw

2πρ0R3Ω

]
R=Redge

, (133)

where Fw can be estimated using Eq. (125), bearing in mind that these calculations
are valid in the linear approximation and should not be expected to be accurate for
the highly non-linear waves excited by a realistically strong bar potential. Taking
into account that m = 2, we find

dRedge

dt
= −

[(
π

R2Ω(dD/dR)

)(
dΦ1

dR
+

2Ω

Ω− Ωp

Φ1

R

)2
]
R=Redge

(134)

Inserting the numbers of our gravitational potential (Sect. 3) into Eq. (134) we
obtain dRedge/dt ' 6 km s−1. The duration of the first stage can be estimated by
dividing the size of the gap by the velocity of the edge. Using |Redge − RILR| ∼
(cs/v0)2/3RILR, v0 = 220 km s−1, RILR = 1.6 kpc and the value of dRedge/dt found
above we obtain:

T1 '
( cs

10 km s−1

)2/3

30 Myr . (135)

This time is relatively short, just a few orbital times for a typical nuclear ring.
Actually, the evolution is likely to be even faster than Eq. (135) suggests because

10Linear waves of small amplitude travel to the centre without affecting the unperturbed
density of the disc. It is only when they become non-linear that they can dump their angular
momentum in the unperturbed disc.

11More precisely, we should calculate λ from the first oscillation of the solution (122).
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of the non-linearity of the process. The evolution of the gap after the first stage
and its final size are determined by the second stage.

5.2 Second stage (|Redge −RILR| & λ)

At the beginning of the second stage there is a gap around the ILR, and the distance
between the inner edge of the gap and the ILR is approximately one wavelength.
Since the width of the edge at this point can be at most one wavelength (because
the edge tail cannot extend beyond the ILR), the edge is “sharp” by definition and
strong waves will be excited at its location according to the analysis in Sect. 4.5.3.
Similarly to the waves excited near the ILR in the first stage, the waves excited
near the edge will become quickly non linear and dissipate, removing the angular
momentum from the gas disc and causing the edge to move inwards. The gas
accumulating at the edge as it sweeps inward is the nuclear ring.

The speed at which the edge moves during the second stage can be estimated
using Eq. (133), where we use Eq. (132) to estimate the flux of angular momentum
FA of waves excited at sharp edges. Using the Lin-Shu approximation (Eq. 63) to
write K ' |D|1/2/cs, and m = 2, we find:

dRedge

dt
= −

[(
2cs

R2Ω |D|3/2

)(
dΦ1

dR
+

2Ω

Ω− Ωp

Φ1

R

)2
]
R=Redge

. (136)

where the factor of 2 takes into account that the outward-travelling leading wave
excited at the edge will be reflected at R = R? into an inward-travelling trailing
wave. Note that Eq. (134) and (136) only differ for the factor in the first round
parentheses on the right-hand-sides, and this factor coincides in the two equations
at a distance of approximately one wavelength from the ILR. This is the point
where we transition from the analysis of Sect. 4.5.2 to the analysis in Sect. 4.5.3,
and from the first to the second stage.

When does the edge stop moving? The process above goes on until waves
continue to be effectively excited at the edge, which happens when both of the
following conditions are satisfied: (i) the edge is “sharp”, i.e. the edge width is
smaller than a few times the wavelength of density waves λ = 2π/K; (ii) the
gravitational potential Φ1 is sufficiently strong. The distance between the edge
and the ILR poses an upper limit to the width of the edge since the edge cannot
cross the ILR, ∆R < |RILR−Redge|.12 Therefore, when the edge is not sufficiently
far from the ILR, it must be sharp. In particular, we can expect the edge to keep

12Recall also that as discussed in Sect. 4.2 the edge cannot be too thin, otherwise the system
becomes Rayleigh-unstable. Thus, we expect the edge width to remain of order λ during the
shrinking process.
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moving until it is located a few wavelengths away from the ILR. Since λ increases
roughly linearly with cs (Eq. 63), we expect the edge to move farther at larger
sound speed, proportionally to the sound speed. Thus, the gap is wider for larger
sound speed, and the radius of the nuclear ring is smaller.

Predicting exactly where the edge will stop, and therefore the final radius of
the ring, is a difficult task. The process is highly non-linear, and the unperturbed
density profile changes in a way that cannot be calculated in the linear approxima-
tion. Numerical experiments [4] show that for our assumed gravitational potential
the ring stops when one can fit approximately 7 wavelengths λ between Redge and
RILR. For weaker barred potential, the edge might stop sooner if Φ1 is too small to
generate sufficient flux of angular momentum at the edge. More details, including
hydrodynamical simulations that show the non-linear development of the scenario
outlined above, can be found in [4] and references therein.

5.3 Analogies with the formation of gaps in planetary rings

Goldreich & Tremaine in 1978 [3] developed a picture for the formation of the
Cassini division in Saturn’s ring that has many similarities with our picture for
the formation of nuclear rings described in Sect. 5. Indeed, they were the first to
derive the solution described in Sect. 4.5.2 for the waves excited near the Lindblad
resonance. In both pictures: (i) a gap opens near the Lindblad resonance due to
waves excited at the resonance; (ii) subsequent excitation of waves at the edge
of the gap continues to widen the gap. The main differences are: (i) The bar
potential is a non-axisymmetric perturbation many orders of magnitude stronger
than the one from Saturn’s satellite Mimas; (ii) the sound speed is negligibly small
in Saturn’s problem, while the effects of finite sound speed are important in our
problem, since the size of the gap (and therefore the radius of the ring) depend
strongly on the sound speed [4]; (iii) self-gravity is negligible for our case, but it
is not negligible in Saturn’s problem. In particular, gravity is the main means of
transport of angular momentum in Saturn’s problem, while advective transport
through pressure is the main mechanism for transport in our problem.

6 Conclusions

We have seen how the formation of nuclear rings can be explained as an accu-
mulation of gas at the inner edge of a gap that forms around the inner Lindblad
resonance of a barred potential. The gap opens because waves excited by the
bar potential remove angular momentum from the gas, moving it inwards. The
gap widens in time because the bar potential continues to excite trailing waves at
the inner edge of the gap. The widening stops when the edge is at a distance of
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several wavelengths from the ILR. The gas accumulating at the inner edge of the
gap forms the nuclear ring. The linear approximation allowed us to elucidate the
basic dynamical process at play. For a realistic strength of the bar potential, the
process is highly non-linear, and the process is better quantitatively studied using
hydrodynamical simulations. More details can be found at the references provided
below, in particular see [4] and references therein.

A The WKB method

The WKB method is a method for finding approximate solutions to linear differ-
ential equations with spatially varying coefficients. We illustrate how this method
works for an equation of the type (56) with Q = 0. A more comprehensive expo-
sition of the WKB method can be found for example in Chapter 10 of [5].

A.1 First order WKB

Consider the following differential equation:

ẍ+ ω(t)2x = 0 (137)

where the dot denotes derivative with respect to t, ω is real and x is complex. If
ω = constant, this is the equation of a simple harmonic oscillator. The general
solution is:

x(t) = A exp[iωt] +B exp[−iωt] , (138)

where A, B are arbitrary complex constants. The period of the oscillation is
T = 2π/ω. When ω(t) is not constant, Equation (137) has in general no analytic
solution. However, when ω(t) is ‘slowly varying’, we can find solutions using the
WKB method. By ‘slowly varying’, we mean that the change in ω(t) during an
oscillation is small, so that ω changes appreciably only after many oscillations.
The typical timescale over which ω(t) changes is Tω = ω/ω̇. The condition that ω
changes slowly is Tω � T , or equivalently:

2πω̇

ω2
� 1 (139)

This is the condition under which we can apply the WKB approximation. Physi-
cally, Equation (137) corresponds to a mass m connected to a spring with a spring
constant k(t) = ω2m that slowly changes over time. We expect such a system
to instantaneously oscillate with a frequency that is given by the (instantaneous)
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ω, while the amplitude of the oscillation A(t) slowly changes over time. Thus we
guess a solution of the following form:

x(t) = A(t) exp

[
±i
∫ t

t0

ω(s)ds

]
(140)

where A and B are complex. Note that in the argument of the exponential we
have the integral

∫
ω(s)ds (and not the product ωt). Intuitively, we can think of∫

ω(s)ds as the phase of the oscillation, i.e. a number that quantifies how many
oscillations occurred since the beginning of the motion. In the case ω = constant,
the integral reduces to ωt and we recover the simple harmonic oscillator. Taking
the derivatives of (140) we find:

ẋ(t) =
(
Ȧ± iAω

)
exp

[
±i
∫ t

t0

ω(s)ds

]
(141)

ẍ(t) =
(
Ä± 2iȦω ± iAω̇ − Aω2

)
exp

[
±i
∫ t

t0

ω(s)ds

]
(142)

Substituting (142) into (137) and simplifying the exponential we obtain:(
Ä± 2iȦω ± iAω̇

)
= 0 (143)

Until now everything has been exact. Equation (143) is completely equivalent to
(137), and Equation (140) can be simply seen as a change of variable in which
we replace x with A. Now comes the WKB approximation. The essence of this
approximation is that every time you take a derivative of A(t) or ω(t), you get
something smaller by a factor ε ∼ 2πω̇/ω2 (see Equation 139). In other words,
you can estimate the magnitudes of time derivatives by replacing d/dt ∼ εω. Thus
Ȧ ∼ εωA, ω̇ ∼ εω. For the second derivatives Ä ∼ εωȦ ∼ ε2ω2A. Using these
relations, we see that the term Ä in Equation (143) can be neglected compared to
the others. This gives:

2Ȧω + Aω̇ = 0 . (144)

The solution to this equation is

A(t) =
C√
ω(t)

(145)

(146)

where C is an arbitrary complex constant. Plugging this into (140) we see that
the general solution of equation (137) in the WKB approximation is:

x(t) =
C1√
ω(t)

exp

[
i

∫ t

t0

ω(s)ds

]
+

C2√
ω(t)

exp

[
−i
∫ t

t0

ω(s)ds

]
(147)
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where C1 and C2 are arbitrary complex constants. We can also write an approx-
imate expression for the derivative using (141) and neglecting the small terms Ȧ
and Ḃ as:

ẋ(t) = iC1

√
ω(t) exp

[
i

∫ t

t0

ω(s)ds

]
− iC2

√
ω(t) exp

[
−i
∫ t

t0

ω(s)ds

]
(148)

Figure 11 shows a comparison between an exact solution of Equation (137) and
the WKB approximated solution obtained using (147).

Remark : the total energy of a simple harmonic oscillator is

E =
1

2
mẋ2 +

1

2
mω2x2 . (149)

This is in general not conserved when ω(t) is not constant. However, if we calculate
E using the approximate solution (147) and (148) we obtain E = constant × ω.
In other words, we obtain that the following quantity is constant:

J =
E

ω
. (150)

This is rather remarkable, because it means that the amplitude of the oscillation
becomes a function of ω. If we increase ω slowly then we slowly decrease it to
its original value, at the end of the process the amplitude will be the same as it
was at the start. It is easy to see that this is violated if ω(t) does not change
slowly (think for example of abruptly changing ω when the system passes through
x = 0: in this case the energy does not change, but ω does). In fact, even if we
vary ω(t) arbitrarily slowly but choose the phase of oscillation under at which the
changes happen, we can make the amplitude increase even without a net increase
in ω (‘parametric resonance’). Thus, there must other conditions of ‘randomness’
on how ω is changed in order for J to be constant.

The quantity J is an example of an adiabatic invariant. Given an Hamilto-
nian H = H(p, q;λ) that depends on some external parameter λ(t), an adiabatic
invariant is a quantity which remains constant if λ changes sufficiently slowly
with time. As mentioned above, in addition to varying slowly, there must also be
other conditions on how ω changes in order to avoid parametric resonances. The
most general condition under which this is true are difficult to define rigorously.
However, it can be proven that a sufficient condition is that H(p, q;λ) is a twice
continuously differentiable function of λ. The interested reader can consult for
example the book of Arnold [6], in particular Section 52E, and Sections 49, 50 and
51 of [7].
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Figure 11: Comparison between the exact and the WKB approximated solution of
Equation (137). The black full line is the exact solution (calculated numerically).
The red dashed line is the 1st order WKB solution (Equation 147 or equivalently
Equation 152 keeping only the S0 and S1 terms). The cyan dashed line is the 3rd
order WKB solution (Equation 152 keeping terms up to S3). The WKB solutions
approximate the exact solution very well when the condition (139) is satisfied
(third row in the figure), but deviates considerably when this condition is not
satisfied. Note that the 3rd order solution does not do a better job than the 1st
order solution when the condition (139) is violated. Note also how the WKB
solution captures the small oscillations in the quantity J = E/ω (Equation 150).
In this example, ω(t) = 1.0 + 0.9 sin(t/10).
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A.2 Higher order WKB

Let’s consider again

ẍ+ ω2(t)x = 0 (151)

where ω(t) varies slowly. We want to generalise the analysis of Section A.1 to
higher order in the small parameter ε = ω̇/ω2 � 1. We look for solutions of the
form

x(t) = exp

[
i

∫ t

t0

∞∑
n=0

Sn(s)ds

]
. (152)

We require that the n+ 1-th term is smaller than the n-th term a factor ∼ ε, and
we expect the Sn(t) to be slowly varying, so we can estimate their time derivatives
using d/dt ∼ εω. Thus we have

Sn ∼ εSn−1 ∼ εnS0 , (153)

Ṡn ∼ εωSn ∼ εn+1S0 . (154)

When only S0 and S1 are retained, we recover the analysis of Section A.1. Taking
the derivatives of (151) we obtain:

ẋ(t) =

(
i
∞∑
n=0

Sn

)
exp

[
i

∫ t

t0

∞∑
n=0

Sn(s)ds

]
, (155)

ẍ(t) =

i ∞∑
n=0

Ṡn −
(
∞∑
n=0

Sn

)2
 exp

[
i

∫ t

t0

∞∑
n=0

Sn(s)ds

]
. (156)

Substituting these into (151) and simplifying the exponential we get:

i

∞∑
n=0

Ṡn −
(
∞∑
n=0

Sn

)2

+ ω2 = 0 . (157)

Using the scalings (153)-(154) and equating order by order in powers of ε, we
obtain the following recursive relations:

S2
0 = ω2 (158)

iṠ0 − 2S0S1 = 0 (159)

iṠn−1 −
n∑
j=0

SjSn−j = 0 (n ≥ 2) (160)
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The first few terms are

S0 = ±ω , (161)

S1 =
iω̇

2ω
=
i

2

d logω

dt
, (162)

S2 = ±
[

3ω̇2

8ω3
− ω̈

4ω2

]
, (163)

S3 = i

[
−

...
ω

8ω3
+

3ω̇ω̈

4ω4
− 3ω̇3

4ω5

]
= i

d

dt

[
3ω̇2

16ω4
− ω̈

8ω3

]
. (164)

It can be verified that if we keep only S0 and S1 we recover the result of A.1. Note
that for ω > 0, Sn is purely imaginary for n odd and purely real for n even. This
is also true in general at all orders, as can be easily verified by induction. Note
also that S1 and S3 can be written as a total derivative. It can be demonstrated
that this is true for all terms with n odd (see Chapter 10 of [5]).

Using (152) and Equations (161)-(164), we can write the general solution of
Equation (151) to third order in the WKB approximation as:

x(t) = C1 exp

[
log(ω−1/2) +

3ω̇

16ω4
− ω̈

8ω3

]
exp

[
i

∫ t

t0

(
ω +

3ω̇2

8ω3
− ω̈

4ω2

)
ds

]
(165)

+ C2 exp

[
log(ω−1/2) +

3ω̇

16ω4
− ω̈

8ω3

]
exp

[
−i
∫ t

t0

(
ω +

3ω̇2

8ω3
− ω̈

4ω2

)
ds

]
(166)

where C1 and C2 are arbitrary complex constants.
Figure 11 compares the first order solution obtained by keeping only the S0 and

S1 terms with the third order solution obtained keeping terms up to S3 included.
In this example, the third order solution gives a better approximation than the
first order solution at t . 40 (this cannot be seen from the figure, but it can seen
if one zooms-in). However, it can be seen the third order solution gives a much
worse approximation at 40 . t . 60, where the parameter ω̇/ω2 is not small.

This is indicative of a general problem regarding the convergence of the WKB
expansion (152). It turns out that for a given ω(t), the series

∑∞
n=0 Sn usually

diverges and grows without bounds. It does not converge to the exact solution
if we keep more and more terms. If we truncate the series truncated after more
and more terms, one typically obtains result that improve up to some maximal
accuracy, and then become worse. For this reason, one should be very careful
when considering higher order WKB approximations. They may give results that
are worse than the 1st-order approximation. A more detailed discussion of these
issues can be found for example in Chapter 10 of [5].
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B Angular momentum

An equation that expresses the conservation of angular momentum in a fluid disc
can be obtained from Eq. (2). Multiplying the azimuthal component of this equa-
tion by R, using standard cylindrical coordinates (R, θ, z) and rearranging gives:

∂(lz)

∂t
+∇ · FJ = −ρ∂Φ

∂θ
, (167)

where

lz = ρRvθ , (168)

FJ = R (ρvθv + P êφ) . (169)

The quantity lz is the angular momentum per unit volume, while FJ is the flux
of angular momentum, which is the sum of contributions due to bulk motions of
the gas and pressure forces. The term ρ∂Φ/∂θ is a source term representing the
changes in angular momentum due to torques from the external potential. When
∂Φ/∂θ = 0, the total angular momentum of the system is conserved. Indeed, the
only agent that can change the total angular momentum in our problem is the
external bar potential.

B.1 Transport in discs

Integrating Eq. (167) over the volume V of a cylinder of radius R0 and using the
divergence theorem,13 we obtain the following equation for the rate of change of
the total angular momentum contained within the cylinder:

∂Lz
∂t

= −FA − FΦ , (170)

where

Lz =

∫
V

ρRvθ dV , (171)

is the total z angular momentum contained inside the cylinder, and

FA = R2

∫ ∞
−∞

dz

∫ 2π

0

dθρvθvR (172)

FΦ =

∫
V

ρ
∂Φ

∂θ
dV , (173)

13The divergence theorem states that for any vector-valued function F(x):∫
V

dV ∇ · F =

∮
S

dS · F(x) .
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are the fluxes of angular momentum in and out of the cylinder.
Eq. (170) states that the change in the total angular momentum of the gas

contained within the cylinder is the sum of two contributions: FA, the angular
momentum flux due to advection, and FΦ, the gravitational torques from the
external bar potential. FA > 0 means that material inside the cylinder is losing
angular momentum. Notice that even in a steady-state, in which single fluid
elements neither gain nor lose angular momentum on average, it is nevertheless
possible that FA 6= 0. This can happen if fluid elements carry more angular
momentum on their outward journey (as they are exiting the cylinder) than on
their return. This type of transport has been named lorry transport by Lynden-
Bell & Kalnajs 1972, who explained how fluid elements can “transport angular
momentum just as a system of lorries can transport coal without accumulating a
growing store on the lorries themselves”.

B.2 Angular momentum of waves in perturbed axisym-
metric disc

Calculating the angular momentum of waves requires some care. In linear theory,
we keep only first order terms in the equations of motion and neglect second-order
terms, but when dealing with angular momentum fluxes, the first order terms are
generally absent and we need to care about second order terms. Consider a general
perturbation around an axisymmetric steady-state gas disc:

ρ(R, θ, t) = ρ0(R) + ∆ρ(R, θ, t) (174)

vθ(R, θ, t) = vθ0(R) + ∆vθ(R, θ, t) (175)

vR(R, θ, t) = ∆vR(R, θ, t) (176)

where the steady-state quantities contain all orders (not just the first-order per-
turbation, i.e. ∆ρ = ρ1 + ρ2 + . . . ). Consider the azimuthal average of Eq. (167):

∂〈lz〉
∂t

+
1

R

∂〈RFJR〉
∂R

= −〈ρ∂Φ

∂θ
〉 , (177)

where 〈·〉 = (2π)−1
∫ 2π

0
· dθ denotes the azimuthal average. Now consider the

following decomposition, which is exact to all orders :

lz ≡ lm + lw = ρRvθ0 + ρR∆vθ , (178)

FJR ≡ FJm + FJw = Rρvθ0∆vR +Rρ∆vθ∆vR . (179)

Using the continuity equation (9) it is easy to see that

∂〈lm〉
∂t

+
1

R

∂〈RFJm〉
∂R

= 0 . (180)
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and therefore subtracting this last equation from (177):

∂〈lw〉
∂t

+
1

R

∂〈RFJw〉
∂R

= −〈ρ∂Φ

∂θ
〉 (181)

Thus, lm and lw separately satisfies conservation equations, correct to all orders.
We identify lw with the ‘wave’ angular momentum. Eq. (181) says that this is
where the angular momentum deposited or subtracted by the external potential
goes. The wave angular momentum is therefore the relevant quantity if we are
interested in calculating net gain/loss of angular momentum in the disc. The
equation with lm can be thought as a separate conservation equation, related to
changes in angular momentum related to a net flux of mass (note that FJm is Rvθ0
times the radial flux of mass).

B.3 Transport in perturbed discs

Using the same expansion of the previous section (174)-(176), the advection flux
Eq. (172) can be rewritten, correct to all orders, as:

FA = R2

∫ ∞
−∞

dz

∫ 2π

0

dθρ (∆vθ∆vR) +R2

∫ ∞
−∞

dz

∫ 2π

0

dθρ (vθ0∆vR) (182)

≡ Fw + Fm (183)

where Fm is Rvθ0 times the radial mass flux at radius R:

Fm = Rvθ0

[
R

∫ ∞
−∞

dz

∫ 2π

0

dθρ∆vR

]
, (184)

The radial flux of angular momentum can therefore be divided in two parts. Fw
is a “wave” part, associated with the conservation equation (181). To calculate
this term up to second-order, we can replace ρ with ρ0 and use the first-order
solutions for ∆vθ and ∆vR. The Fm is a non-wave part associated with (180) that
is non-zero only if there is a net radial mass flux. Although we will not prove it,
calculations retaining the second-order terms show that the mass flux is generally
zero, because the fluid elements just slosh back and forwards during each cycle.

C An exactly solvable toy model: excitation of

1D waves by an oscillating Gaussian potential

Here we describe a toy model that shares various similarities with the actual prob-
lem studied in the main text but has the advantage that it can be solved fully
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analytically. This toy model is helpful for understanding why the coupling of the
external potential and the fluid, and therefore the amplitude of the waves excited
by an external potential, can depend very strongly on the gas sound speed.

We can draw the following correspondences between this toy problem and the
problem studied in the main text (i) 1D sound waves correspond to spiral density
waves; (ii) The 1D Gaussian potential corresponds to the bar potential; (iii) The
linear momentum of plane waves plays a similar role to the angular momentum of
the spiral density waves; (iv) Eq. (191) is the analog of Eq. (56).

C.1 Statement of the problem

Consider a 1D isothermal fluid at rest with uniform density ρ0. Our goal is to study
the waves excited in this medium by a “small” time-varying external potential
Φ(x, t).

The equations of motion of this system are the same as Eqs. (1), (2) where the
gradient is replaced by d/dx since the problem is one dimensional. We assume
an isothermal equation of state, P = c2

sρ , where cs is a constant. We linearise
these equations around the background state by writing ρ(x, t) = ρ0 + ρ1(x, t)
and v(x, t) = v1(x, t) and keeping only the first-order terms in the quantities with
subscript 1. We obtain:

∂tρ1 + ρ0(∂xv1) = 0 , (185)

∂tv1 = −c2
s

∂xρ1

ρ0

− ∂xΦ . (186)

Without loss of generality, we can write all variables as

F (x, t) = F̃ (x) exp(−iωt) . (187)

Where F̃ are complex quantities. We use complex notation for mathematical
convenience, but it is understood that the physical quantities are given by the
real part. Substituting all perturbation variables in the form (187) into (185) and
(186), and omitting the symbol ˜ hereafter for simplicity of notation, we obtain

− iωρ1 + ρ0(∂xv1) = 0 (188)

− iωv1 = −c2
s

∂xρ1

ρ0

− ∂xΦ(x) (189)

Isolating v1 from (189) and introducing the variable s1 = ρ1/ρ0 we have

v1 =
c2

s (∂xs1) + (∂xΦ)

iω
(190)
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Substituting (190) into (188) we obtain an ODE for s1:

ω2s1 + c2
s

d2

dx2
s1 = F (191)

where

F (x) = −∂2
xΦ . (192)

Eq. (191) is the equation of a forced harmonic oscillator. Now consider an oscil-
lating Gaussian potential of the form:

Φ(x, t) = Φ1 exp

[
−
(
x

x0

)2
]

exp(−iω0t) (193)

where Φ1 is the strength of the potential, x0 is the width of the Gaussian pertur-
bation, ω0 is the oscillation frequency. Since in the linear approximation there is
no coupling between modes at different frequencies, only modes with frequency
ω = ω0 will be excited by this potential. Hence we assume ω = ω0 hereafter.
Introducing the dimensionless coordinate ξ = x/x0 and using (193), Eq. (191)
becomes:

d2s1

dξ2
+ a2s1 = ba2K(ξ) (194)

where

K(ξ) = (1− 2ξ2) exp
[
−ξ2

]
, (195)

and we have introduced the following dimensionless parameters:

a =
ω0x0

cs

, (196)

b =
2Φ1

ω2
0x

2
0

. (197)

The parameter a is the inverse of the sound speed, normalised with the typical
scale-length and frequency of the problem. The parameter b is the normalised
strength of the external potential.

C.2 Analytical solution

The general solution of Eq. (194) is

s1(ξ) = C1 exp(iaξ) + C2 exp(−iaξ) + bW (ξ, a) , (198)
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where C1 and C2 are arbitrary constants and

W (ξ, a) = −1

2
a2e−ξ

2

+X(ξ, a) , (199)

X(ξ, a) = −iα
[
eiaξ erf

(
ξ + i

a

2

)
− e−iaξ erf

(
ξ − ia

2

)]
, (200)

α =

√
π

8
a3e−a

2/4 . (201)

Here, erf(z) = 2√
π

∫ z
0
e−t

2
dt is the error function, which is defined for complex

argument z (to evaluate the integral, you can choose any integration path in the
complex plane that leads to z). Note however that the functions X and W are real
because the erf function has the properties erf(z) = erf(z) and erf(−z) = erf(z),
where the bar denotes the complex conjugate.

Figure 12 plots the function W (ξ, a) for various values of a. In the limit ξ →
±∞ we have that erf(ξ+ic/2)→ ±1 for any fixed c, so W (ξ, a)→ ∓iα[eiaξ−e−iaξ].
Therefore W (ξ, a) becomes a plane wave when ξ → ±∞ (as one would expect).
In the limit a→∞ the W tends to the forcing term K on the right-hand-side of
Eq. 12.

What is the amplitude of the waves that are excited by the external potential
(193)? In order to answer this question we have to determine the constants C1 and
C2 in Eq. (198) by imposing appropriate boundary conditions. Causality requires
that for large |x| the waves propagate “away” from the potential (this is the same
boundary condition that is used to derive retarded potential in electrodynamics).
A solution in which the waves come from infinity towards the potential would
instead require a source at infinity, which is unphysical. Therefore, we impose
that the solution propagates towards positive ξ as ξ → +∞ and towards negative
ξ as ξ → −∞. To see in which direction the solution (198) is travelling, we look
at its time-dependence by reattaching the factor exp(−iω0t) to it:

s1(ξ, t) =
[
C1e

iaξ + C2e
−iaξ + bW (ξ, a)

]
e−iω0t . (202)

A plane wave of the form eiaξ−iω0t (e−iaξ−iω0t) travels towards positive (negative)
ξ. The solution that satisfies our “radiation” boundary conditions is then:

s1(ξ, t) = b
[
−iαeiaξ − iαe−iaξ +W (ξ, a)

]
e−iω0t . (203)

This solution tends to s1(ξ, t)→ −2iαbe±iaξe−iω0t for x→ ±∞. Thus, the poten-
tial excites waves with an amplitude of

A = 2bα = b

√
π

4
a3e−a

2/4. (204)
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Figure 12: The function W (ξ, a) defined by Equation (199) for various values of
a.

The key point here is that the amplitude A of the excited waves has an extremely
strong dependence on the sound speed cs ∝ 1/a. The amplitude A tends to zero
very quickly both for a→ 0 (cs →∞) and a→∞ (cs → 0), and (for fixed b) has
a maximum in between at a =

√
6. This has a simple physical interpretation. The

coupling between the external potential and sound waves in a uniform medium is
strongest when the wavelength of free sound waves at the frequency of the external
potential is comparable to the scale-length of the potential. This is indeed what
happens, as can be seen as follows. The dispersion relation of free sound waves
travelling in a uniform medium is ω = csk, where k = 2π/λ is the wavenumber and
λ is the wavelength. Therefore, the wavelength of free sound waves travelling in a
uniform medium at frequency ω0 is λ0 = 2πcs/Ω0. The parameter a = 2πx0/λ0 is,
apart from a numerical constant, the ratio between the scale-length of the potential
and the wavelength of free sound waves at that frequency. Thus, we expect the
potential to be most effective in driving waves when a is of order unity.
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D Details on the calculations of waves excited at

a sharp edge

D.1 Derivation of Eqs. (128)-(130)

In a neighbourhood of the point R = Rout we can approximate Eq. (127) as

g1(R) = eiKR
[
A1 −

Qout

2K2
e−iKRout − i

2K

∫ Rout

R0

Q(s)e−iKsds

]
+

+ e−iKR
[
A2 −

Qout

2K2
eiKRout +

i

2K

∫ Rout

R0

Q(s)eiKsds

]
+

+
Qout

K2
(neighbourhood of Rout) , (205)

where Qout = Q(Rout). Since the waves are travelling outwards at R = Rout, the
term proportional to eiKR should vanish. This condition gives Eq. (128).

Similarly, in a neighbourhood of the point R = Rin we can approximate
Eq. (127) as

g1(R) = eiKR
[
A1 −

Qin

2K2
e−iKRin − i

2K

∫ Rin

R0

Q(s)e−iKsds

]
+

+ e−iKR
[
A2 −

Qin

2K2
eiKRin +

i

2K

∫ Rin

R0

Q(s)eiKsds

]
+

+
Qin

K2
(neighbourhood of Rin) , (206)

where Qin = Q(Rin). Since the waves are travelling inwards at R = Rin, the term
proportional to e−iKR should vanish. This condition gives Eq. (129).

Substituting Eqs. (128) and (129) into Eq. (205) and Eq. (206) respectively we
find

g1(R) = e−iKR
[
i

2K

∫ Rout

Rin

Q(s)eiKsds

]
+

+ e−iKR
[
Qin

2K2
eiKRin − Qout

2K2
eiKRout

]
+

+
Qout

K2
(neighbourhood of Rout) , (207)
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and

g1(R) = eiKR
[
i

2K

∫ Rout

Rin

Q(s)e−iKsds

]
+

+ eiKR
[
Qout

2K2
e−iKRout − Qin

2K2
e−iKRin

]
+

+
Qin

K2
(neighbourhood of Rin) . (208)

Matching Eqs. (207) and (208) with Eq. (126), one obtains Eq. (130).

D.2 Derivation of Eq. (131)

We approximate Eq. (130) as follows. First, we neglect the terms proportional to
Qin and Qout because Q varies rapidly at radii Rin < R < Rout. We obtain

|Cin| ' |Cout| '
1

2K1/2

∣∣∣∣∫ Rout

Rin

Q(s)e−iKsds

∣∣∣∣ . (209)

Second, the exponential exp(−iKs) is nearly constant as we have assumed |Rout−
Rin| ∼ λ ∼ 1/K, so we can write

|Cin| ' |Cout| '
1

2K1/2

∣∣∣∣∫ Rout

Rin

Q(s)ds

∣∣∣∣ . (210)

We have ∫ Rout

Rin

Q(s)ds = I1 + I2 + I3 + I4 , (211)

where

I1 = −
∫ Rout

Rin

ds

(
sρ0

|D|

)1/2
d2Φ1

ds2
(212)

I2 = −
∫ Rout

Rin

ds

(
sρ0

|D|

)1/2
d

ds

[
log
(sρ0

D

)] dΦ1

ds
(213)

I3 = −
∫ Rout

Rin

ds

(
sρ0

|D|

)1/2
2Ω

s (Ω− Ωp)

d

ds

[
log

(
ρ0Ω

D

)]
Φ1 (214)

I4 =

∫ Rout

Rin

ds

(
sρ0

|D|

)1/2
m2Φ1

s2
. (215)

Since |Rout/Rin − 1| � 1 and far from the ILR the integrand is bounded, we have
I1 ' I4 ' 0.
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We calculate I2 and I3 below. The idea is to integrate by parts in order to
isolate the integral of a bounded function. We have

I2 = −2

∫ Rout

Rin

ds
d

ds

(
sρ0

|D|

)1/2
dΦ1

ds
=

= −2

[(
Rρ0

|D|

)1/2
dΦ1

dR

]
R=Rout

+ 2

[(
Rρ0

|D|

)1/2
dΦ1

dR

]
R=Rin

+

+ 2

∫ Rout

Rin

ds

(
sρ0

|D|

)1/2
d2Φ1

ds2
=

= 2

[(
Rρ0

|D|

)1/2
dΦ1

dR

]
R=Rin

, (216)

and

I3 = −4

∫ Rout

Rin

ds

[
Ω1/2Φ1

s1/2 (Ω− Ωp)

]
d

ds

(
ρ0Ω

|D|

)1/2

=

= −
[

4Ω

Ω− Ωp

(
Rρ0

|D|

)1/2
Φ1

R

]
R=Rout

+

+

[
4Ω

Ω− Ωp

(
Rρ0

|D|

)1/2
Φ1

R

]
R=Rin

+

+ 4

∫ Rout

Rin

ds

(
ρ0Ω

|D|

)1/2
d

ds

[
Ω1/2Φ1

s1/2 (Ω− Ωp)

]
=

=

[
4Ω

Ω− Ωp

(
Rρ0

|D|

)1/2
Φ1

R

]
R=Rin

, (217)

where we have used the fact that ρ0(Rin)� ρ0(Rout). Substituting Eqs. (216) and
(217) into Eq. (211), we find∫ Rout

Rin

Q(s)ds = 2

[(
Rρ0

|D|

)1/2(
dΦ1

dR
+

2Ω

Ω− Ωp

Φ1

R

)]
R=Rin

. (218)

Substituting Eq. (218) into Eq. (210), we obtain Eq. (131).
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