A JWST investigation into barred galaxies at high redshifts z > 1

Academy of Athens Seminar Zoe Le Conte 08.04.25 zoe.a.le-conte@durham.ac.uk Supervisor: Dimitri Gadotti

With: Dimitri Gadotti, Leonardo Ferreira, Christopher Conselice, Camila de Sa Freitas, Taehyun Kim, Justus Neumann, Francesca Fragkoudi, Lia Athanassoula and Nathan Adams

HISTORY OF THE BAR FRACTION

THE BAR FRACTION

BAR PROPERTIES

2

+.J	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5
t	4	3	3	2	2	L.	L.	

- galaxies.

Credit: Fragkoudi

BAR FORMATION

Bars form in thin and kinematically cold disc

• The disc galaxy is unstable to small nonaxisymmetric instabilities. • Instabilities can occur from interactions or local density variations.

BAR RESONANCES

BAR-DRIVEN EVOLUTION: REDISTRIBUTION OF ANGULAR MOMENTUM

 Bars primarily redistribute angular momentum, baryonic and dark matter within a disc galaxy.
 (e.g., Menéndez-Delmestre et al. 2007; Regan et al. 2006;

.g., Menéndez-Delmestre et al. 2007; Regan et al. 2006; Di Matteo et al. 2013)
J moves outwards: stars at the ILR emit angular momentum while those at the OLR and CR absorb it.

Athanassoula (2005)

BAR-DRIVEN EVOLUTION: CENTRAL REGIONS

Gas loses angular momentum from shocks due to the non-axisymmetric potential.
Provoke gas inflow to the inner regions of the galaxy.
(e.g., Athanassoula 1992; Quillen et al. 1995; Athanassoula & Bosma 2016; Laine & Gottesman 1998; Newnham et al. 2020)

High velocities
 formation
 discs.
 (e.g., Sumio e
 Coelho & Gad

• High velocities halt inflow and begin the formation of central structures - nuclear

(e.g., Sumio et al. 1990; Kormendy & Kennicutt 2004; Coelho & Gadotti 2011; Carles et al. 2016; Gadotti et al. 2020)

BAR-DRIVEN EVOLUTION: STAR FORMATION

Neumann et al. (2020)

- Masters et al. (2012)
- massive galaxies.
- ignite bursts of star formation.

• Bars quench star formation in the outer disc of

• Concentrated molecular gas in the central regions

(e.g., Ho et al. 1997; Sheth et al. 2005; Ellison et al.

2011; Lee et al. 2012)

BAR-DRIVEN EVOLUTION: AGN

- - galaxies is greater than the AGN fraction in unbarred galaxies.
- Potential fuelling of AGN. (e.g., Knapen et al. 1995; Alonso, M. S. et al. 2013; Cisternas et al. 2015; Silva-Lima et al. 2022).

• The fraction of AGN in strongly barred

- The funnelling of gas towards the inner
 - regions could create a fuel reservoir.

WAVELENGTH DEPENDENCE

Marinova & Jogee (2007)

• Automated (e.g., Wozniak et al. 1995; Elmegreen et al. 2004; Jogee et al. 2004; Marinova & Jogee 2007; Guo et al. 2022)

• The strong bar fraction increases in the NIR. (e.g., Marinova & Jogee 2007; Buta et al. 2015) • The NIR traces the stellar mass distribution. • Highly subjective as the fractions can be dependent on the identification method:

(e.g., Cheung et al. 2013; Simmons et al. 2014; Buta et al. 2015)

STELLAR POPULATION WITHIN THE BAR

Neumann et al. (2020)

• Older stars dominate the bar's stellar population. (e.g., Gadotti & de Souza 2006; Perez, Sanchez-Blazquez & Zurita 2007,2009; Neumann et al. 2020).

BAR IDENTIFICATION: ISOPHOTAL ANALYSIS

- Automated process.
- Favourable for large surveys.
- Can falsely identify the spiral arms as bars.

Example:

- Bar region: e rises smoothly to max e > 0.25, and PA stays consistent at < 20 degrees.
- Outer disc: drop in e by 0.1 and change in PA by 10 degrees.

BAR AGE

- In simulations, bars form relatively quickly within the order of a few hundred million years. (Athanassoula & Sellwood 1986; Athanassoula 2013; Ghosh et al. 2023; Fragkoudiet al. 2024)
- Bar ages can be dated by the point at which SF ignites in the nuclear disc using novel techniques and IFU data.
- Bars are found to develop at z > 1.

THE LOCAL BAR FRACTION

- There is agreement that the local Universe bar fraction is up to 60-80%, including weak bars. (e.g., de Vaucouleurs 1963; Eskridge et al. 2000; Menéndez-Delmestre et al. 2007; Sheth et al. 2008; Erwin 2017)
- The bar fraction peaks for galaxies with log stellar mass = 9.7.

THE EVOLUTION OF THE BAR FRACTION

- Bar fraction studies using HST are limited to z < 1.8.
- The bar fraction steadily decreases to 10% at z = 1.

(e.g., Abraham et al. 1999; Sheth et al. 2003; Jogee et al. 2004; Sheth et al. 2008; Melvin et al. 2014).

 A constant bar fraction of 10% has been found between redshifts 1 to 1.8. (Simmons et al. 2014)

THE EVOLUTION OF THE BAR **FRACTION IN SIMULATIONS**

Fragkoudi et al. (2025)

- Some simulations find a decrease in the bar fraction up to z = 3.5.
- In agreement with observations.

- z = 1.

Rosas-Guevara et al. (2022)

• Some simulations find an increase in the bar fraction up to

• By z = 3, the bar fraction is still 40%.

Guo et al. (2023) found six barred galaxies using JWST with the highest being $z \sim$ 2.136 and 2.312.

Rowland et al. (2024) found a barred galaxy using ALMA [CII] at z = 7.3065.

Huang et al. 2023 found a barred galaxy at z = 2.467 with JWST.

Amvrosiadis et al. (2024) found a barred galaxy at z = 3.762 by strong lensing.

HIGH REDSHIFT BARS

GALAXY EVOLUTION WITH JWST

• The disc fraction dominates one billion years after the Big Bang.

- Stellar mass and star formation rate densities are dominated by disk galaxies z < 6; most stars in the universe were likely formed in a disk galaxy.
- The vast majority of massive galaxies at high redshifts have low Sérsic indices.

JWST data:

- 4 CEERS pointings.
- Used NIRCam F444W and F356W filters.
- F444W PSF is 0.145" or 2 kpc.

HST data:

- CANDELS on the EGS and the UDS fields.
- Used HST infrared channel WFC3/IR F160W.

5,241 galaxies for 1 < z < 3.

Same galaxies in HST and JWST.

Bars are easier to identify in near face-on galaxies

- Fit elliptical isophotes to the galaxies.
- Fix the galactic centre.
- Apply a 60-degree inclination limit to outer elliptical isophotes. **Optimised sample**

SAMPLE SELECTION

Disc sample

Parent sample

- fraction is approx. 45%.
- fractions is approx. 76%.

• JWST disc fractions from Ferreira et al. (2023). Their disc

• HST disc fractions from Kartaltepe at al. (2015). Their disc

Le Conte et al. (2024)

The Bar Fraction

MASS COMPLETENESS

- The mass complete sample is above the Duncan et al. (2019) green line.
- The parameter space below the step function corresponds to a completeness fraction of ≈ 85 95%.

The Bar Fraction

FILTER COMPARISON

wavelength

Le Conte et al. (2024)

The Bar Fraction

HOW PAPER II DIFFERS FROM PAPER I

- 10 CEERS pointing between 1 < z < 4.
- F356W for 1 < z < 2; F444W for 2 < z < 4.
- Select mass complete sample.
- Remove neighbouring objects with SExtractor.
- Remove edge-on galaxies in optimisation.
- Remove unresolved objects using 2D fits with Imfit.
- Visually classify barred and unbarred disc galaxies.
- Repeat for F200W filter.

THE EVOLUTION OF THE BAR FRACTION

Le Conte et al. (in prep)

THE EVOLUTION OF THE BAR FRACTION

Paper I conclusions:

- The fraction of bars in disc galaxies at redshifts 1 2 is ~ 18%.
- The fraction of bars in disc galaxies at redshifts 2 3 is ~ 12%.
- The JWST bar fraction is twice the HST bar fraction. Paper II conclusions:
 - Weakly barred galaxies seen at z > 3.
 - The bar fractionis consistent with Paper I within the uncertainties.
 - At all redshifts, the bar fraction is similar in short- and long-wavelength NIRCam filters.

is ~ 18%. is ~ 12%.

uncertainties. d long-wavelength NIRCam

STELLAR MASS BAR FRACTION

MEASURING THE BAR LENGTH

Bar length grows from high- to low-z.
(e.g., Hohl 1971; Athanassoula & Misiriotis 2002; O'Neil & Dubinski 2003; Debattista et al. 2006; Dubinski et al. 2009; Minchev et al. 2011)
Bars do not grow in length across the redshift range. (e.g., Kim et al. 2021; Guo et al. 2024)

Guo et al. (2024)

THE BAR LENGTH

THE EVOLUTION OF THE BAR LENGTH

F200W Deprojected F200W Projected

- F444W Deprojected
- F444W Projected

Stronger evolution in F200W

4.0

3.5

Le Conte et al. (in prep)

THE BAR ELLIPTICITY

Le Conte et al. (in prep)

BAR DECOMPOSITION

- Imfit: 2D functions fit to high-z bars. Erwin 2019
- Up to 3 components modelled.
- A technique for bar length, ellipticity and bar/total mass ratio measurements.

Original Image

Central Component

Residuals

CONCLUSIONS - LE CONTE ET AL. (2024)

- The fraction of bars in disc galaxies at redshifts 1 2 is ~ 18%.
- The fraction of bars in disc galaxies at redshifts 2 3 is ~ 12%.
- The JWST bar fraction is twice the HST bar fraction.
- We miss bars shorter than 3 kpc.

CONCLUSIONS - LE CONTE ET AL. (2025, IN PREP)

- At bluer wavelengths, we may encounter dust obscuration and observe shorter bars.
- High-z bars have a similar length to bars at z = 0.
- High-z bars are rounder in the lower resolution filters due to a PSF effect.
- Evolution in average bar length no greater than 1 kpc, and observed stronger in F200W NIRCam filter.
- Internal secular evolutionary processes begin earlier than once thought.

zoe.a.le-conte@durham.ac.uk **Zoe Le Conte**

The Bar Fraction

MASS DEPENDANCE

BOXY/PEANUTS

0.6

0.5

0.4

0.2

0.1

0.0

- B/Ps are edge-on barred galaxies.
- Resolution challenges at high-z.
- Identification of B/Ps at early times will constrain theoretical models.
- Provide a measure of bar-driven evolution.

Fragkoudi et al. (2017)

Kruk et al. (2019)

SLOWDOWN OF BAR PATTERN SPEED

MATURE GALAXIES

- Grand design spirals exist at z > 1.
- Settled and mature galaxies were in place 11 billion years ago.
- Massive disc galaxies are seen in simulations.
- The high-z dis galaxies are similar to the local Universe.

11 billion years ago. ns. cal Universe.

THE EVOLUTION OF THE BAR LENGTH

WAVELENGTH DEPENDENCE

- 100% bar detection at bar length > 2 FWHM.
- Is the bar fraction higher in F200W?
- Bluer wavelengths have improved spatial resolution.
- At z = 0, a lower bar fraction at bluer wavelengths is found.
- Guo et al. (2024) found shorter bars and an evolution in bar length.

MACHINE LEARNING

- The future of local morphological classifications is automated.
- Collaboration with Kolesnikov et al (in prep) to classify discs or spheroids using a hybrid method.
- Kolesnikov et al. (2024) achieved a 95% overall success rate on SDSS data and HST separately.

Monthly Notices of the

ROYAL ASTRONOMICAL SOCIET MNRAS 528, 82-107 (2024) Advance Access publication 2023 December 21

Unveiling galaxy morphology through an unsupervised-supervised hybrid approach

I. Kolesnikov[®],^{1,2} V. M. Sampaio[®],^{3,4} R. R. de Carvalho,⁴ C. Conselice,² S. B. Rembold,⁵ C. L. Mendes¹ and R. R. Rosa

¹Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 12227-010 SP, Brazil

²Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL, UK

³School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK

⁴NAT - Universidade Cidade de São Paulo, 01506-000 SP, Brazil

⁵Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil

Accepted 2023 December 19. Received 2023 December 19; in original form 2023 October 19

BAR-DRIVEN STAR FORMATION PROCESSES AT Z > 1

- Observe 6 barred and 6 unbarred galaxies between from Paper I.
- Matched in redshift and stellar mass.
- Measure integrated star formation rates from H α and H β lines.
- Direct comparison of enhanced SFR in barred galaxies, due to gas inflow to central regions.
- Compare trends to Paper II.

WHAT INHIBITS BAR FORMATION?

- ESO studentship proposal.
- Use archival PHANGS data from the IFS MUSE on the VLT of 10 barred and unbarred galaxies.
- Analysis of the kinematics, stellar ages, and chemical compositions using the GIST pipeline.
- Measure the velocity dispersion at various radii and select locations across the bar and outer disc.
- Select young bars from the TIMER sample for insight into the properties which inhibit bar formation.

JWST bar properties

The JWST bar fraction

JWST bar SFR

JWST dark gaps JWST boxy/peanuts MUSE kinematic

properties

Complete Ongoing Proposed

ROADMAP

Paper I: The JWST bar fraction

Paper II: JWST bar properties; F200W; machine learning

Studentship: velocity dispersion of MUSE bars

XSHOOTER: SFR of JWST bars

Ghosh et al.: Dark gaps

The JWST B/P fraction