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ABSTRACT
We investigate the dynamics of a barred-spiral model, rotating with a single pattern speed,
which is characterized by a corotation-to-bar-radius ratio (Rc/Rb) about 2.9. The response
morphology of the model consists of an inner barred-spiral structure, surrounded by an oval-
shaped disc and a fainter set of arms at larger radii. The oval-shaped disc and the barred-spiral
structure included in it are located inside corotation, while the outer spiral arms extend beyond
it. The system harbours two main different dynamical mechanisms, which shape its morphol-
ogy. The bar and the spiral arms inside corotation are structured to a large extent by regular
orbits, while the spiral arms beyond corotation are built by chaotic orbits. Chaotic orbits play
a role also inside corotation, specifically in building weak extensions of the inner spirals as
well as in the central part of the bar. The oval-shaped disc is also shaped by chaotic orbits. For
the outer spirals, we find that the vast majority of the chaotic orbits, which reinforce the spi-
rals at least for a time interval of 8 pattern rotations, includes in its morphology the imprints
of “4:1-resonance-like” orbits, in agreement with previous studies, as well as of “long-period-
banana-like” orbits. Both of them belong to orbits of the “hot orbital population” that visit
both areas, inside and outside corotation. This orbital population plays the key role for sup-
porting structures out of chaos. In the case we study order and chaos cooperate in building a
galactic morphology that is encountered among grand design spiral galaxies (NGC 1566 and
NGC 5248). The fact that in the model are implicated, on one hand the “precessing ellipses
flow” supporting the spiral arms of normal spirals and on the other hand the “chaotic spirals”
found in barred-spiral systems, indicates that it is a model bridging two different orbital stellar
dynamics.
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1 INTRODUCTION

This paper revisits the orbital dynamics of barred-spiral systems.
We investigate all possible dynamical mechanisms that shape a
barred-spiral morphology. The question we address is about the
types of orbits that participate in building the spiral arms and the
bar. Is there a unique solution to this problem and if not, under
which conditions is one or the other mechanism activated? The un-
derstanding of this procedure has major implications on the overall
dynamics of the discs, since the character of the orbits that sup-
port the spiral arms and the bar is directly related with the location
of corotation, in other words with the pattern speed of the system.
Furthermore, different structure-supporting mechanisms point to-
wards different stellar flows in the discs and this difference affects
in turn also the gaseous flows and subsequently the star formation
procedures.
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In non-barred spirals, regular, quasi-periodic orbits provide
support to the spiral arms up to the inner 4:1 resonance (Contopou-
los & Grosbøl 1986, 1988; Patsis et al. 1991; Martos et al. 2004;
Lépine et al. 2011), provided that the gravitational potential does
not change considerably at least over several pattern periods.

In barred-spiral models on the other hand it has been proposed
that the particles on the arms follow both chaotic and regular orbits
(Kaufmann & Contopoulos 1996), or only chaotic orbits (Voglis
& Stavropoulos 2005; Patsis 2006; Voglis et al. 2006; Romero-
Gómez et al. 2006). This latter idea has been developed and elabo-
rated mainly by two groups in long series of papers. The interested
reader may refer to recent extended, or review articles (Contopou-
los 2009; Athanassoula et al. 2010; Efthymiopoulos 2010; Patsis
2012) and references therein. The basic idea is that particles fol-
lowing the unstable branch of the manifolds associated with the
families of unstable periodic orbits surrounding the unstable La-
grangian points L1 and L2 close to the ends of the bar (called PL1
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2 L. Tsigaridi & P.A. Patsis

Figure 1. The radial variation of the maximum force of the perturbation
Fpmax , with respect to the axisymmetric force, F0, in our main model.

and PL2 families by Tsoutsis et al. (2009)), form the spiral arms,
which extend beyond the corotation of the system.

Chaotic orbits of particles participating in the formation of
spiral arms have been studied also in N-body models (Voglis et
al. 2006; Tsoutsis et al. 2008; Harsoula & Kalapotharakos 2009;
Harsoula et al. 2011; Athanassoula 2012). These orbits reflect the
orbital behaviour of the “hot orbital population” discussed initially
by Pfenniger & Friedli (1991).

Nevertheless, results from other studies indicate that the
mechanism based on the chaotic orbits in the neighbourhood of
PL1 and PL2 cannot be considered as unique for explaining all
observed barred-spiral morphologies of disc galaxies. Patsis et al.
(2009) have presented a response model for the SB(rs)c type galaxy
NGC 3359 (de Vaucouleurs et al. 1991, RC3), which matches the
structure of the spiral arms only if the particles on the spirals fol-
low a “precessing-ellipses flow”, i.e. their orbits are regular (quasi-
periodic). In such a case, if one wants to have a bar ending close to
its corotation the bar should have a pattern speed different from the
pattern speed of the spirals. The same potential for faster pattern
speeds developed “chaotic spirals” (as we will call hereafter the
spirals supported by particles in chaotic motion). However, these
spiral arms were totally out of phase with respect to the spiral arms
of the modelled galaxy.

As regards the chaotic orbits some works emphasize spe-
cific features, which are associated with the particular energy
ranges, over which these orbits exist. One can even find particu-
lar structure-supporting mechanisms decoupled from the presence
of PL1 and PL2. Specifically, (a) Patsis (2006) and Patsis et al.
(2010) underline the fact that the orbits they find to support the spi-
rals in potentials estimated from near-infrared observations have a
strongly 4:1 resonance morphological character, (b) Tsoutsis et al.
(2008) show that the unstable manifolds of all the families of un-
stable periodic orbits near and beyond corotation contribute to the
support of the spiral structure and (c) Patsis et al. (2010) describe
a mechanism for reinforcing spiral arms by chaotic orbits inside
corotation.

On top of this, chaos seems to be responsible also for part of
the structure of the bars themselves in many cases. Already Kauf-
mann & Contopoulos (1996) presented orbits contributing to the
surface density of the bars and the spirals. Patsis et al. (1997) ex-
plained the outer envelope of the bar of NGC 4314 by means of
chaotic orbits at the 4:1 resonance region. Patsis (2005) presented

chaotic orbits supporting a ring morphology in 2D Ferrers bars and
concluded that in some cases in order to understand the orbital be-
haviour of barred galaxies we have to look for structures supported
by chaotic orbits. Chaotic envelopes of bars have been also found
in the N-body models by Voglis et al. (2006). They are built by
orbits of the same character as those building the chaotic envelopes
of the bar of the NGC 4314 model in Patsis et al. (1997) and Pat-
sis (2006). They are typical orbits of the “hot orbital population”
(Pfenniger & Friedli 1991).

Furthermore in the potential for NGC 1300, estimated by
Kalapotharakos et al. (2010) and studied by Patsis et al. (2010), the
change of the pattern speed resulted to such a deformation of the
effective potential isocontours in the bar region in a certain range of
pattern speed values, so that their shape was of an ansae morphol-
ogy. In this case we had multiple Lagrangian points roughly along
the major axis of the bar. In general bars are supported by the x1
family of orbits (Contopoulos & Grosbøl 1989). However, in the
models by Patsis et al. (2010), an ansae type bar in the response
surface density could be sustained mainly by chaotic orbits instead
of the typical x1 family of stable periodic orbits. The fact that the
set of parameters characterizing these models is typical for barred-
spiral galaxies, poses the question about how common could such
“chaotic bars” be.

An alternative approach for the dynamics of spirals has been
proposed by Zhang & Buta (2007). In this approach collective dis-
sipation effects play a key role. This leads in many cases to different
corotation radii than those suggested for the corresponding galac-
tic types in the papers mentioned thus far in the introduction. In
the Zhang & Buta (2007) models a different orbital content is ex-
pected, so that foreseen extensions of the bars beyond corotation
and other features could be justified.

In general, the dynamics of a bar, or of a barred-spiral sys-
tem, cannot be inferred just by inspection of its morphology. Qual-
itatively similar looking barred-spiral morphologies may appear in
snapshots of N-body simulations during time intervals in which the
bar rotates either fast or slowly (cf. the morphologies in the models
by Athanassoula & Misiriotis (2002) and in the recent simulations
by Saha & Naab (2013), as well as the barred-spiral morphologies
appearing during the evolution of these models).

The aims of the present paper are:

• To find all possible dynamical mechanisms that could support
the spiral arms in barred-spiral systems.
• To understand the conditions under which each mechanism

appears.

The barred-spiral perturbations we study in our paper are strong.
Our approach to the problem is based on orbital theory. Non-linear
effects dominate and as a result the morphologies we study in our
models are established within a few dynamical times. The longevity
of these structures or the possible successive activation of the mech-
anisms we describe in the present paper during the evolution of a
disc galaxy over a Hubble time, should be studied by means of N-
body models.

The structure of the paper is the following: In Section 2 we
describe the model we use in our calculations and in Section 3 we
outline the method we followed in our study. The results are pre-
sented in 4, where we divide the model in four regions and we
describe the dynamical mechanisms acting in each one of them in
Sections 4.2 to 4.6, giving special attention to the role of the “hot
orbital population” of orbits, described in 4.4. Finally we discuss
our results and enumerate our conclusions in Section 5.
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The backbones of stellar structures 3

Figure 2. (a) Isocontours of the effective potential. We indicate the location of the stable Lagrangian points L4 and L5 as well as that of the unstable points
L1 and L2. (b) The stellar response of the model after 10 bar rotations starting from circular velocities in the axisymmetric background. (c) The same as in (b)
in a model with initial conditions with a certain dispersion of velocities (see text). The grey scale bars embedded in the frame gives the density scale. Darker
shades correspond to denser regions. “A” and “B” point to the inner and the outer spirals respectively.

2 THE MODEL

Our potential in the plane of the galaxy is expressed in the form of
a Fourier series so that

Φ(r, ϕ) = Φ0(r) +
∑

m=2,4,6

Φmc(r) cos (mϕ) + Φms(r) sin (mϕ) (1)

The components Φ0(r), Φmc(r), and Φms(r) of the equation above
are given as polynomials of the form

∑
nanrn, n = 0 . . . 8.

We have taken as basis the NGC 3359 potential as estimated
by Patsis et al. (2009) from near-infrared observations under some
assumptions for the thickness of the disc, the M/L ratio and the
distribution of dark matter. Despite the fact that observed mor-
phologies even in the near infrared may deviate from the actual
mass distribution (Zibetti et al. 2009) the model we use here is
quite realistic. The near infrared observations of a real galaxy are
taken as a basis for obtaining a well behaved barred-spiral poten-
tial. By changing properly the an values of the coefficients, we
increased the strength of the bar and we decreased the strength
of the higher order terms (m=2,4,6) so that we have a maximum
force perturbation as described in Fig. 1. The plotted curve gives
the ratio of the maximum non-axisymmetric perturbing force at a
given radius [(∂Φp/∂r)2 + (r−1∂Φp/∂ϕ)2]1/2 to the total axisymmet-
ric force |dΦ0/dr|, where Φp and Φ0 are the potential of the non-
axisymmetric and axisymmetric terms respectively. In this way we
study a barred-spiral potential which has the following advantages:

(i) It has a dominating m=2 term and it is expected to follow
archetypal dynamics for a wide range of late types barred-spiral
morphologies in the Hubble sequence.

(ii) It is realistic because it originates from the NGC 3359 poten-
tial, which is a galaxy with a well defined barred-spiral structure.

(iii) It has an explicit self-gravitating spiral arm component.
(iv) It has a smooth transition at the end of the bar and beginning

of spirals’ region.

However, the adoption of a gravitational field originating from a
potential estimation of a real galaxy has always a known disad-
vantage, namely that we know it up to a certain distance from the
centre of the galaxy. This makes such potentials less appropriate for
studies of orbits which visit large distances from the centre of the

Figure 3. The initial tangential velocities in the case of the response model
in Fig. 2c.

system and eventually escape. In our models we trust our potential
up to a radius r ≈ 12.5 kpc.

Our calculations are performed in a frame rotating with a sin-
gle pattern speed. We try to understand the dynamics as the pattern
speed of the barred-spiral potential varies. An additional novelty
of this work in comparison with previous studies is that we do not
confine ourselves to the study of barred-spiral systems with the end
of the bar close to corotation. Morphological features of the bar
pronounced in even slower rotating models will be discussed in
Tsigaridi & Patsis (2013b) (Paper II). In cases we want to inves-
tigate the differences introduced in the dynamics when we have a
stronger m=2 component in the spiral arms region, we modify ap-
propriately thean values of the coefficients of the polynomials that
build the Φmc, Φms terms in Eq.(1) and this results to a model with
a stronger perturbation. Such models, as well as fast rotating cases,
are presented by Patsis & Tsigaridi (2013) (Paper III).

3 THE METHOD

The steps we follow in order to identify the dynamical mechanisms
giving rise to the various morphological features, which we en-
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4 L. Tsigaridi & P.A. Patsis

counter as we vary the pattern speed, can be schematically sum-
marized as follows:

(i) We calculate the stellar response by imposing the model po-
tential to a set of initial conditions.

(ii) We isolate in the density maps of the response models the
regions, where we observe the features we want to analyse.

(iii) We study the statistics of the Jacobi constants (EJ , hereafter
called the energies) of the particles participating to the formation of
the specific morphological feature under study.

(iv) At energies, where we find many particles contributing to
the local surface density in the region of the feature under study,
we investigate the possible orbits of these particles. We consider
the y = 0 surface of section for orbits intersecting it with ẏ > 0
and in cases it was needed we considered also the corresponding
x = 0 surface of section with orbits intersecting it with ẋ > 0.
Then we calculate orbits on a dense grid of initial conditions on
the surfaces of section, covering the allowed phase space at this EJ,
as it is defined by the curves of zero velocity. Viewing the location
of the initial conditions of these orbits on the surfaces of section
we practically know if the orbits behave as regular or chaotic. If an
orbit from a chaotic sea starts in reality on a tiny stability island,
not discernible in the figure, this will not affect our conclusions. At
any rate we are interested about orbits integrated for a given time
interval (see section 4.3 below).

(v) By calculating the full tree of characteristics (see e.g. Con-
topoulos & Grosbøl 1989) for each model and the stability curves
(i.e. the Hénon (1965) index, as a function of EJ) of every family,
we know the location and the stability of the periodic orbits at each
EJ at least until multiplicity three. Then, from the calculated extent
of the stability islands around the stable periodic orbits (hereafter
“p.o.”), from the structure of the asymptotic curves associated with
the unstable p.o. and from the sticky zones in the phase space, we
estimate the contribution of the various dynamical mechanisms to
the formation of the spiral arms, the bar, the rings or any other
structure that eventually appear in the model.

The details of this procedure become clear in the following ex-
ample, which can be considered as the “general” case, in the sense
that it harbours versions of all dynamical mechanisms we encoun-
tered in all studied models of this gravitational potential with dif-
ferent pattern speeds.

4 THE GENERAL CASE

We run more than 20 response models for pattern speeds Ωp in the
range 10 < Ωp < 40 km s−1 kpc−1 . For all of them we studied
their orbital structure. All of them developed some barred-spiral
morphology, the exact structure of which was changing as we var-
ied Ωp. E.g. the pitch angle of the response spiral or the extent of
the bar depended on Ωp. The reason for the change of the response
morphology was the activation of different dynamical mechanisms
for different pattern speeds. Nevertheless, despite the differences,
all of the response morphologies are barred-spiral. For the case we
consider as “general” we take Ωp=15 km s−1 kpc−1 and we use
about 106 test particles. The generality of the case results from the
fact that in the formation of the barred-spiral morphology of the
particular response model, as we will see, participate all of the main
dynamical mechanisms we encountered by studying the dynamics
of potential (1) rotating with different Ωp.

We impose the full potential Φ(r, ϕ) (Eq. (1)) to a set of initial
conditions, which are randomly distributed homogeneously on a

Figure 4. The inner bar-spiral morphology of our model. Note the inner
boxy isophotes of the bar. Darker shades correspond to denser regions.

disc of radius r = 11 kpc. The system in each model rotates with its
pattern speed Ωp, in our case 15 km s−1 kpc−1. To the particles were
given initial velocities v0, either such as to secure circular motion
in the axisymmetric part of the potential Φ0(r), or velocities with a
certain dispersion around v0. By giving velocities close to the cir-
cular velocity in Φ0(r) and integrating orbits in Φ(r, ϕ) the system
chooses by itself the orbital families to populate. In general we ob-
serve that the basic morphological features of the response models
do not change as the initial dispersion of the velocities increases.
However, they become less sharp, as we will see below.

The initial conditions are integrated for 10 system rotations
using a standard 4th order Runge-Kutta scheme. The equations of
motion are derived from the Hamiltonian

H ≡ 1
2

(
ẋ2 + ẏ2

)
+ Φ(x, y) − 1

2
Ω2

p(x2 + y2) = EJ (2)

where (x, y) are the coordinates in a Cartesian frame of reference
rotating with angular velocity Ωp. Φ(x, y) is the potential (1) in
Cartesian coordinates, EJ is the numerical value of the energy and
dots denote time derivatives. There is an initial time interval in the
runs of the models, during which the total perturbation increases
from 0 to its total amplitude.

The isocontours of the effective potentialΦe f f = Φ− 1
2Ω

2
pr2 are

given in Fig. 2a, where we indicate the location of the Lagrangian
points L1, L2 (unstable) and L4, L5 (stable). For L1 and L2 we have
EL1,2 = −27772 (in units of km2 s−2), while their coordinates are
(x, y) = (∓0.042,±8.856) respectively. The system rotates counter-
clockwise.

Models starting with the particles in pure circular motion in
the axisymmetric component Φ0 and models with velocity disper-
sions up to 20% of the circular velocity in the tangential and up
to ±45 km s−1 in the radial direction, do not show any qualitative
difference in their response morphology and in general are similar
among themselves.

In the current case the response model with circular initial ve-
locities of the particles is presented in Fig. 2b, while one with ini-
tial tangential velocities as in Fig. 3 and a radial velocity dispersion
about ±40 km s−1 is presented in Fig. 2c. The initial tangential ve-
locities are given to the particles by adding or subtracting randomly
to v0 a velocity term in the range up to 0.2× v0. In Figs. 2b,c darker
regions correspond to higher surface densities. Both responses are
very similar and are characterized by an inner barred-spiral struc-
ture and an extension of the spirals to larger radii as weaker fea-
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The backbones of stellar structures 5

Figure 5. (a) The flow in the region of the bar and the inner spirals. (b) The flow along the outer fainter arms. The size of the arrows is scaled so that we can
qualitatively understand the flow in the two regions.

tures. The models are presented as they appear after 10 pattern ro-
tations. In models with higher dispersion of velocities we find at
the end of the simulation more particles in the spiral arms region
beyond corotation. The response of the model we observe in Fig. 2
does not change if we continue to integrate the orbits of the parti-
cles for more than 10 pattern rotations. Particles that “escape” are
substituted by particles at random positions and initial velocities
according to the initial set up.

The response morphology is characterized firstly by the pres-
ence of a bar. The dynamics of the bar, in all models with Ωp =

15 km s−1 kpc−1 we examined, follows in general the standard x1
flow with stable p.o. of elliptical shape aligned almost along the
major axis of the bar (Contopoulos & Grosbøl 1989). So we will
not present the orbits reinforcing the bar here. We only note a box-
iness of the central isophotes in the bar region (Fig. 4). The orbital
dynamics leading to this feature are in all cases the same, but they
are more pronounced in models with even lowerΩp. This and other
deviations from the standard “x1-flow” in the bar region will be
presented in paper II, where we discuss exclusively slow rotating
patterns.

Beyond the bar we observe a symmetric set of spirals with an
inner part (its arms are indicated with “A” in Fig. 2c) and an outer
one (indicated with “B”). The shape of the isophotes point to a clear
local minimum of the spirals in the response density around 7 < r <
9 kpc, i.e. close but inside corotation (cf. with Fig. 2a). The outer
set of arms in the response models (“B”) is fainter, despite the fact
that initially we considered the test particles being homogeneously
distributed in the disc of the model.

By plotting the velocity field for snapshots of the response
model, it is clear already after 3-4 pattern rotations that the flow
along the spiral arms changes as the radius increases. In Fig. 5a we
depict the velocity field by focusing in the bar region and in the
region including the part “A” of the spiral arms (Fig. 2b), while in
Fig. 5b we give the velocity field in the outer parts of the model.
The difference in the two flows is conspicuous. On one hand, in
Fig. 5a we have a flow around the centre of the system in the sense
of its rotation (counter-clockwise). We notice that the vectors be-
come disordered as we approach corotation. On the other hand in

Fig. 5b the flow is along the faint spiral arms. To a certain degree the
situation resembles the flows given for normal (part “A” of the spi-
ral) and barred-spiral galaxies (part “B”) respectively as described
by Patsis (2009). However, both flows are associated with the spiral
arms of the response model. This is an important result, because it
shows that two different flows coexist in the same model and coop-
erate to structure a uniform response morphology. In order to study
the orbits of the particles that participate in the formation of the
arms we divide the response model in concentric rings. The spiral
arms of the model start close to the end of the bar (part “A”), while
the faint extensions extend beyond r > 8.2 kpc (part “B”).

4.1 Segments of spiral arms

As we see in Fig. 6a the spiral arms can be morphologically divided
in four parts by the concentric rings we draw. Within each annulus
the spiral arms are the denser feature. The underlying model is the
one in Fig. 2b. The annular regions are separated by circles drawn
successively at r = 3.4, 5, 6.6 and 8.2 kpc. These radii have been
chosen by careful inspection of Figs. 2 and 5 and correspond to
radii at which we observe changes in the morphology and the flow
of the model. Darker shades correspond to denser regions. The con-
trast of the image is chosen such as to reveal details of the spiral
arms up to the radius of L1, L2. The shape of the spiral arms for
r > 8.2 (i.e. starting slightly inside the L1, L2 radius) is inferred
from the overplotted isocontours. For all particles in each region
we perform statistics in their energies. The distribution of the en-
ergies are given in Figs. 6b to e. As a next step, we consider in
all cases the EJ value that appears most often in each annulus (the
mode of the histogram) and we investigate the orbital dynamics in
our model for this energy. It is expected that this will characterize to
a large degree the orbital dynamics of the arms in the correspond-
ing region, since the majority of the particles in the annulus will
be close to the mode EJ value. A verification of the result is done
by overplotting the orbits we find to dominate at this EJ on the re-
sponse density map of our model, in order to check if and how an
orbit reinforces the morphological feature we study. In cases we
find that there is significant contribution in another EJ range apart
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6 L. Tsigaridi & P.A. Patsis

Figure 6. (a) The division of the arms in four regions by drawing four concentric circles at radii r = 3.4, 5, 6.6 and 8.2 kpc. From (b) to (e) we give the
energies’ distribution in the regions 3.4 < r < 5 (“1”) with bin size 250, 5 < r < 6.6 (“2”), bin size 200, 6.6 < r < 8.2 (“3”), bin size 100 and r > 8.2 (“4”),
bin size 100, respectively.

from the mode value, we repeat our analysis in this energy range.
The results of this investigation are described below.

4.2 Region ”1”

The mode of the distribution of EJ in region “1” is at EJ =−30000
(Fig. 6b), while there are significant contributions in the range
−30250 <EJ < −29500. In all these energies order dominates and
the surfaces of section are characterized by the presence of big is-

lands of stability around the stable periodic orbit x1. The (x, ẋ) sur-
face of section for EJ =−30000 is given in Fig. 7a.

c© 0000 RAS, MNRAS 000, 000–000



The backbones of stellar structures 7

Figure 7. (a) The surface of section for EJ =−30000. (b) Successive quasi-periodic orbits corresponding to the invariant curves labelled with the corresponding
number in (a). The p.o. x1 is given in the lower right panel. Only the orbits in panels 5, 6 and 7 reinforce the spirals in region “1”.
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8 L. Tsigaridi & P.A. Patsis

By viewing this landscape we conclude that the orbits that
support the inner strong spirals, which appear immediately beyond
the end of the bar in the model, can only be quasi-periodic orbits
around the stable p.o. x1. Chaos is almost absent for x > 0 (Fig. 7a).
The location of the p.o. is indicated by an arrow labelled “p.o.”
in Fig. 7a. Its shape is given in the lower right panel of Fig. 7b.
The available orbits in the range −30250 <EJ < −29500, as in-
ferred from the surfaces of section, combined with the velocity field
of the model we presented in Fig. 5, strongly indicate the pres-
ence of a “precessing ellipses mechanism” (Patsis 2009) associated
with the spiral arms. In this energy range the x1 orbits are not any
more almost aligned with the major axis of the bar, but precess
as the energy varies. By plotting successive elliptical x1 p.o. with
−30250 <EJ < −29500 (Fig. 8), it is evident that they precess in
such a way as to support the spiral arms. From Fig. 8 we conclude
also that the quasi-periodic orbits supporting the spiral arms in re-
gion “1” should not considerably deviate morphologically from the
p.o., since the p.o. by themselves reproduce the pattern that sup-
ports the spirals. The populated quasi-periodic orbits should cor-
respond to the smaller invariant curves around the x1 p.o. Indeed,
only the orbits in panels 5, 6 and 7 in Fig. 7b reinforce the spirals.
They correspond to the innermost three invariant curves around the

Figure 8. x1 family orbits at energies from inside to outside
−30500,−30300,−30000,−29700,−29500. They come very close, without
intersecting each other, in the regions of the spiral arms.

p.o. in Fig. 7a. The quasi-periodic orbits in the panels that corre-
spond to the other invariant curves of Fig. 7a do not support the spi-
ral arms. It is known that considering quasi-periodic orbits with the
same EJ value on different sets of invariant curves around the same
p.o. can lead to different response morphologies (Patsis 2005). It
is also known that the shape of a p.o. is in general different from
the shape of the structure it supports by being part of its backbone
(Patsis 2005).

4.3 Region ”2”

In Figs. 2b,c we observe that the strong spirals continue in region
“2” (Fig. 6a) as thinner features with a different pitch angle. Follow-
ing the same procedure as before, we examine the EJ distribution of
the particles in annulus “2” (Fig. 6c). The structure observed in re-
gion “2” is reinforced by particles mainly in the range −28800 <EJ

< −26600 having a mode at EJ =−27770. This means that we have
a contribution from particles with energies around the energies of
the unstable Lagrangian points (EL1,2 = −27772) and close to it.
The fact that we find in region “2” also particles with EJ > EL1,2 ,
located at radii smaller than that of L1,2, raises the question of a
possible contribution to the observed local response surface den-
sity maxima in region “2” by the “hot orbital population”.

In our investigation we use also another useful tool for the
study of orbital dynamics of galaxies, which is the (EJ, x0) diagram
of the characteristics of the main families (Contopoulos 1970). In
our case the characteristics of the central family x1 and all other
main simple periodic families for −30000 < EJ < −24000 are
given in Fig. 9. Black parts along the drawn curves indicate sta-
bility, while grey (red in the online version) instability Family
x1 becomes unstable for EJ > −29316, bifurcating two 3:1 sim-
ple periodic families. As we see in Fig. 9 the characteristics of
the two new families follow complicated paths reaching a maxi-
mum for EJ ≈ −28100. Together with x1 and the characteristics of
other families that are inversely bifurcated from x1 at larger ener-
gies (indicated as “4/1” in Fig. 9), form a bundle of characteristic
curves that fill the largest part of the characteristic diagram between
−29000 < EJ < −28400. Along all these curves the morphology of
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Figure 9. The characteristic curves of x1 and the main families of simple
periodic orbits for EJ > −30000. The vertical lines indicate the EJ loca-
tions at −28800,−27772, (EL1,2 ), −26500 and −25650. Black parts indicate
stability, while grey (red in the online version) instability.

the periodic orbits changes gradually from 3:1 to 4:1 type as en-
ergy increases. This change of morphology designates the passing
from the 3:1 to the 4:1 resonance region. We indicate this change
schematically by drawing a triangle close to the vertical line at EJ

= −28800 and a rectangular to the left of the EL1,2 energy. All p.o.
are asymmetric. We note that the initial conditions of the p.o. have
in general non-zero initial velocities. A (EJ , x0) diagram depicts
projections of the characteristics. Thus, in Fig. 9 we do not have
real intersections of the curves, except at the bifurcations points.

The evolution of the phase space in the region “2” is depicted
in Fig. 10. From top to bottom we have the (x, ẋ) surfaces of sec-
tion for EJ = −28800 (a), −28000 (b), and −27000 (c) respectively.
They are characterized by the presence of a chaotic region that
seems to be included within a KAM curve and is roughly extending
in the area (∆x ×∆ẋ) ≈ (2, 6)× (−100, 100). We call it “the chaotic
lake” in order to facilitate the description of the figures. As we in-
crease the energy we encounter in it both stability islands and chaos
until EJ ≈ −28100. A typical example is the one in Fig. 10a. For
larger energies we observe in this region only chaos surrounded
by a KAM curve as in Fig. 10b. The same happens also for EJ

= −27000 > EL1,2 (Fig. 10c). However, from this energy on, by
starting integrating orbits in the chaotic lake we have in addition
consequents appearing to the left and to the right of the central re-
gion of the (x, ẋ) surface of section. This is a consequence of the
opening of the curves of zero velocity for EJ >EL1,2 . The chaotic
lake splits in three parts. In Fig. 10c we observe consequents to
the left and to the right of the central part. Regions appearing de-
pleted from consequents represent orbits that follow immediately
long journeys away from the bar-spiral region and are discussed in
detail below.

In order to find out which is the dominating orbital behaviour
at a specific EJ and check what is its relation to the observed struc-
ture in the region we examine, we have taken initial conditions on
a dense grid and we have integrated orbits for time corresponding
to 8 pattern rotations. We will refer hereafter to this time interval as
T8. This time interval is safe against secular evolution, for applying
the Hamiltonian approximation in modelling the galaxy. In addi-
tion T8 is enough for building stable structures as we empirically
realize from our response models. In that sense we are not looking
for orbits with regular behaviour over a Hubble time or more, but

Figure 10. Three (x, ẋ) surfaces of section at energies in which we find
particles supporting the continuation of the spiral arms in region “2” (see
Fig. 6a). In (a) EJ = −28800, in (b) EJ = −28000 and in (c) EJ = −27000.

for many orbits which have similar morphologies, due to stickiness
effects, within T8. By plotting these orbits we could easily realize
that only orbits from the chaotic lakes in −28800 < EJ < −26600
bring particles in the spiral arms region.

The orbital dynamics changes as energy increases towards
EL1,2 . In Fig. 10a we have EJ =−28800. As we see in Fig. 9 the
left vertical line crosses the characteristic of all families of peri-
odic orbits at this energy, thus they are present on the surface of
section. In this energy, the x1 orbit at (x, ẋ) ≈ (4.16,−9.5), is un-
stable. However, it is surrounded by invariant curves together with
two stable p.o. bifurcated at the transition of x1 from stability to
instability. Totally we have six stability islands corresponding to
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Figure 11. Three characteristic orbits at EJ = −28000 that enhance the surface density in region “2” (Fig. 6a). Their segments, which are roughly parallel to
the x-axis reinforce also the bifurcation of the spiral arms appearing in the region.

the stable p.o. found from the intersections of the left vertical line
in Fig. 10a. All of the stable p.o. have triangular shapes. None of
them helps in the formation of the structure we observe in region
“2”. We found that contributions to the spiral arms structure are
coming only from the quasi-periodic orbits surrounding both x1
as well as the two bifurcating families, and from the chaotic or-
bits from the sticky zones surrounding the other two 3:1 stability
islands existing in the chaotic lake (one at its right border and an-
other around (x, ẋ) ≈ (2.75, 0)). These orbits are also reinforcing to
some degree the bifurcating features from the spirals that tend to
form a pseudoring in region “2”. However, more significant contri-
bution to the structures in this region is coming from particles with
larger EJ close and beyond EL1,2 .

For EJ = −28000 (Fig. 10b) there are no stability islands in
the chaotic lake any more. Particles with this EJ do not belong to
the orbital population visiting both the bar and the spirals because
the value of EL1,2 is larger than −28000. The integration of a dense
grid of initial conditions over the whole (x, ẋ) surface of section
clearly shows that dense surface density features in region “2” are
supported by orbits having mainly a 4:1 resonance character, with
segments roughly parallel to the x-axis. Such orbits reinforce the
bifurcations of the arms that extend also in region “1”. Three such
orbits are presented in Fig. 11. These are chaotic orbits inside coro-
tation, that support a spiral pattern. Their similarity with the orbits
proposed to be associated with the spiral arms of NGC 1300 by
Patsis et al. (2010) indicate that “chaotic spirals” inside corotation
may be present in a larger class of barred-spiral systems. Orbits
with a 3:1 character exist in the system but are not populated in the
response model. If they were populated, they would not enhance
but destroy the spiral structure.

In conclusion in region “2” the segment of spiral arms in it is
supported mainly by chaotic orbits with −28000 < EJ < EL1,2 . Their
morphology resembles orbits of 4:1 type. More interesting is the
fact that there is also a contribution to the segment of the spiral arms
located in region “2” from particles with energies beyond the EJ

values of the unstable Lagrangian points EL1,2 , despite the fact that
L1 and L2 are located at a larger radius. This indicates an important
role of the hot orbital population of particles visiting both the bar
and the arms region, for the overall dynamics and morphology of
the model. This will become evident in the following sections.

4.4 Contribution to regions “2” and “4”

Fig. 10c shows a (x, ẋ) surface of section at EJ = −27000, which
is typical for energies immediately beyond EL1,2 . A closer study of
the dynamics at this energy is necessary not only for the dynamics
of region “2” (Fig. 6a), but also for the dynamics of the outer part
of the spirals extending in region “4”, i.e. for r > 8.2 kpc. We
present our results at this point before going to the discussion of
region “3”. The importance of the dynamics at energies close to
EJ = −27000 is evident in Figs. 6e,c. In Fig. 6e we observe that
we have a significant contribution of particles with energies in the
interval −27772 (= EL1,2 ) < EJ < −26000. Altogether we find more
particles with these energies in the outer spirals, than in energies
close to the mode of the distribution in Fig. 6e at EJ = −25650,
because of the long tail of the histogram to the left of its mode.
The surfaces of section in the interval −27772 < EJ < −26000 are
similar to the one for EJ = −27000 (Fig. 10c), so we focus on it.

In comparison with Figs. 10a,b, in Fig. 10c we observe in the
(x, ẋ) surface of section two more regions with consequents, on the
sides of the central one, as expected, since we are now beyond the
energy of the Lagrangian points L1,2. The chaotic lake communi-
cates with them. The diagram of the characteristics (Fig. 9) tells
us that for EJ = −27000 we have three unstable simple-periodic
orbits and a member of the family of the long period banana-like
orbits (Contopoulos & Grosbøl 1989), which is designated as “lpb”
in the figure. This family is found to be stable at the lowest energy
we find it and then is mainly unstable. We find also long period
banana-like orbits along another branch of a characteristic in Fig. 9
for −26200 / EJ / −25500 with a stable part for its lowest en-
ergies. The initial conditions of the p.o. of all these families are
located in the chaotic lake in Fig. 10c. Their morphology is given
in Fig. 12. The rectangular type orbits are all unstable, while the
long period banana-like orbit at this energy is stable. However, the
stability island around it is tiny and not easily discernible in the
surface of section without zooming.

Focusing into the region of Fig. 10 with 0 < x < 6.6 (Fig. 13)
we imposed a grid of initial conditions on the surface of section
and we integrated 1027 orbits for time T8. By overplotting these
orbits on the response model we realized that only non-periodic
orbits from the chaotic lake reinforce the part of the spiral structure
in region “2”, and/or the spirals extending beyond 8.2 kpc. Orbits
outside this area in Fig. 13 are irrelevant to the observed structures
and are not populated in the response model.

In Fig. 13a we point with arrows to the initial conditions of the
simple periodic orbits and we indicate them with their names. The
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Figure 12. The morphology of the simple periodic orbits we found in the
system for EJ = −27000. The black orbit is the x1 representative at this
energy, while the other two rectangular like orbits are those indicated by
(4 : 1)a,b in Fig. 9. All of them are unstable. The orbit at the right side of
the figure is a long period banana-like orbit, stable at this energy.

rectangular symbol next to the initial conditions of x1 indicates its
morphology character (Fig. 12). The banana-like stable orbit “lpb”
is surrounded by a tiny island of stability. The heavy dots plotted in
the chaotic lake correspond to (x0, ẋ0) initial conditions on the grid
of integrated orbits, which support the spirals in region “2” or/and
beyond 8.2 kpc (region “4”). In this set of initial conditions one
can apply the algorithm suggested by Chatzopoulos et al. (2011) to
classify their morphologies. However, in the present case, the or-
bits relevant to the features we study can be divided by eye in two
classes. (a) Those which spent a considerable time in the bar region
and demonstrate a morphology which can be vaguely described as
having a “4:1 resonance” character and (b) those that follow a path
bringing them directly beyond corotation through the L1 or L2 win-
dows. Typical examples of the first and second class are given in
Fig. 13b and Fig. 13c respectively. All of these orbits belong to the
“hot orbital population” and visit both region “2” and the disc be-
yond the corotation region. However, not all orbits belonging to the
first kind go through the L1 or L2 gates during the integration time
T8, but they do so in later times. In Fig. 13a heavy black dots cor-
respond to orbits of the first class, while grey (green in the online
version) to the second.

In Fig. 10c, as well as in Fig. 13a we observe regions depleted
from consequents. These are not really empty regions, but represent
orbits that perform long loops away from the central area of the
model. Since our potential is not well defined for r > 12.5 kpc
practically the “white” regions indicate the presence of orbits that
reach distances larger than 14 kpc. These orbits will be discussed in
more detail in Patsis & Tsigaridi (2013) (paper III), where models
with Ωp > 15 km s−1 kpc−1 are presented.

Careful inspection of Fig. 13a shows that the grey (green on-
line) heavy dots are always found in these “white” parts; not only
in the main white region at the right part of the surface of section,
but also in “white stripes” that cross the dense regions of the chaotic

lake. The same analysis has been done in the left region of Fig. 10c,
giving similar results.

We notice that in the present model the “hot orbital popula-
tion” does not bring material beyond corotation from an envelope
just surrounding the bar (as it was done in the model for NGC 4314
described in Patsis (2006)), but from a larger disc region around the
bar. This is expected since Rc/Rb ≈ 2.9, thus we have enough space
on the disc between the end of the bar and the Lagrangian points.
The dynamics of the model described here shapes now also the
disc region surrounding both the bar and the inner spiral. As men-
tioned elsewhere (Patsis & Kalapotharakos 2011) these dynamics
lead to morphologies similar to what is observed in some grand
design galaxies like NGC 1566 and NGC 5248, where two sets of
bisymmetric spirals co-exist. In Fig. 14 we overplot two character-
istic orbits with EJ = −27000 on the response model, so that their
contribution to the shaping of the outer boundary of the disc region
inside corotation and to the outer spiral arms becomes conspicuous.

Having calculated the exact location of the simple periodic
orbits, we can calculate the asymptotic curves (manifolds) of the
unstable periodic orbits on the surfaces of section. This will allow
us to investigate in what degree a manifold occupies a region in the
surface of section where the orbits follow morphological patterns
with common features if integrated for time T8. In our case we want
to examine if a region occupied by a manifold separates regions in
which the two different classes of orbits (Fig. 13b and Fig. 13c)
dominate. In Fig. 15 the background (light grey dots - red in the
online version) is the (x, ẋ) surface of section in the region of the
chaotic lake. The drawn straight lines represent the eigendirections
of the unstable x1 p.o. The location of x1 is indicated with a white
dot at the intersection of the two lines. The unstable eigendirection
is along U1U2 and the stable along S1S2. The black dots plotted on
top of the surface of section in Fig. 15 give the shape of the asymp-
totic curve associated with the U1 eigendirection. For the technical
details of calculating the asymptotic curves see e.g. Contopoulos
& Polymilis (1993). We observe that to a large extent it covers
the region of the chaotic lake where we find orbits like the one
in Fig. 13b. This can be seen by comparing Fig. 15 with Fig. 13a
(note the difference in the scales of the axes in the two figures).
The parts of the surface of section not covered by the manifold are
those where we find orbits starting inside corotation and almost im-
mediately reinforce the outer spirals as the one in Fig. 13c. There
is a good agreement between the empirically calculated initial con-
ditions that demonstrate a 4:1-resonance morphology and the area
covered by the x1 asymptotic curve. We have to have in mind that
the area occupied by the asymptotic curve is not dense and between
the lobes of the manifold there are stripes with consequents not be-
longing to it. The unstable asymptotic curve of x1 covers the largest
part of the area on the surface of section, which contributes to the
enhancement of the spiral structure. All chaotic orbits plotted for
8 pattern rotations with initial conditions on this asymptotic curve
demonstrate a 4:1 resonance morphology character. These orbits
contribute to the density enhancement along the spiral feature in
region “2”. However, not all of them visit regions beyond corota-
tion within T8, but they do so in larger times. We find similar results
for all other (x, ẋ) surfaces of section in the −27772 < EJ<−26000
range.

The other kind of orbits with EJ = −27000 that is important for
the dynamics of our model reinforce immediately the outer spirals
(labelled with “B” in Fig. 2) without spending much time inside
corotation. The particles along these orbits are found in region “4”
at r > 8.2 kpc (Fig. 6a). If material contributing to the outer spirals
is initially in the inner disc region, away from the L1, L2 “gates”, it
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Figure 13. At EJ = −27000 (> EL1,2 ) initial conditions of orbits that support the part of the spiral arms in region “2” or the outer spiral arms region during
the time T8 are found in the area of the “chaotic lake” of the (x, ẋ) surface of section. They are either chaotic orbits which spend a considerable time at radii
r < rL1 ,L2 or chaotic orbits which go very fast beyond corotation. The initial conditions of orbits of the first kind are denoted with heavy black dots, while
those of the second kind with green dots. A typical example of the first kind of orbits is given in (b) and of the second in (c). Arrows indicate the location of
the simple periodic orbits on the surface of section.
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Figure 14. Two typical orbits at EJ =−27000, which support the outer spiral
and simultaneously shape the borders of the disc region surrounding the
inner barred-spiral structure.

has first to be able to approach the neighbourhood of the unstable
Lagrangian points and to have the appropriate energy (EJ > EL1,2 )
and should not be trapped in regular motion around a stable p.o.
At EJ ≈ EL1,2 the main families of simple periodic orbits existing
(apart from the family surrounding the L1, L2 points, which does
not intersect the y=0 axis), are again those depicted in Fig. 12. The
energy width ∆EJ at which the 4:1 resonance dominates and affects
the morphology of the orbits is the largest among the corresponding
∆EJ intervals of orbits of the n : 1 resonances with n > 4 (see e.g.
the stability diagrams in Contopoulos & Grosbøl (1989)).

Like in Fig. 15 also in all other (x, ẋ) surfaces of section we

Figure 15. The asymptotic curve associated with the U1 eigendirection of
x1 plotted in the (x, ẋ) surface of section for EJ = −27000. The straight lines
represent the U1U2 and S1S2 eigendirections. The location of x1 (white dot)
is at the intersection point of the two lines.

examined in the energy range −27772 < EJ < −26000 we found
that the vast majority of the orbits of particles which contribute to
the spiral structure are associated with the 4:1 unstable p.o. How-
ever, one should examine also the morphology of the orbits in (y, ẏ)
surfaces of section. In these cross sections appear also the PL1 and
PL2 families of p.o. (Tsoutsis et al. 2009) surrounding the L1 and
L2 points. The corresponding to Fig. 10c (y, ẏ) surface of section is
depicted in Fig. 16a. We follow the same procedure of integrating
a large number of orbits with initial conditions on a grid. The areas
where we find the integrated orbits reaching distances r > 8.2 kpc,
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Figure 16. (a) The (y, ẏ) surface of section for EJ = −27000. Coloured areas correspond to initial conditions we have integrated for time T8. Orbits with initial
conditions in the yellow regions, as well as all not coloured areas do not contribute to the morphology of Fig. 2b. Orbits in light blue regions have after short
time r > 12 kpc and do not reinforce significantly the outer spirals. Dark blue regions represent orbits reinforcing the outer spirals without contributing to
the features in region “2”. Three such orbits are given in (b). Finally the green regions correspond to orbits either staying for T8 inside corotation or crossing
corotation reinforcing the outer spirals. They have a morphology like that of the two orbits in (c).

and thus being related with the outer spiral structure of our model,
are on the left and right sides of Fig. 16a. We find three types of
orbital behaviour in these regions. First, orbits which immediately
go to distances r > 12.5 kpc having a small contribution on the
outer spirals of our response model. Their initial conditions are
dots coloured with light blue in Fig. 16a. Second, orbits that for
time T8 stay in the region surrounding the inner bar-spiral structure
and reinforce practically the outer spirals, like the three orbits given
in Fig. 16b. Their initial conditions are coloured with dark blue in
Fig. 16a. Finally orbits that stay for a large part of the integration
time inside corotation. Their initial conditions on the (y, ẏ) surface
of section are coloured green. 60% of them visit within the time T8

the outer spirals region. The rest of them do the same at later times.
In this category we classify orbits like those depicted in Fig. 16c.
The indicated with yellow colour initial conditions correspond to
orbits that do not contribute to any structure in our model. No fur-
ther analysis is needed to conclude that the majority of the orbits

with −27772 < EJ <−26000 that reinforce the outer spirals within
T8 have partly a 4:1-resonance morphological character. Note that
the grid with initial conditions was less dense on the left part.

4.5 Region ”3”

The surface density of the spiral in our stellar response model has
locally a minimum of its amplitude in the region “3” (6.6 < r <
8.2 kpc) of Fig. 6a. This can be observed also in Figs. 2b,c, where
the isophotes in the regions close to L1 and L2 do not have a spiral
arm shape any more. We can speak about a gap or a discontinuity
in the spiral arms. The energies of the orbits of the particles are dis-
tributed as in the histogram in Fig. 6d. Clearly these particles have
energies EJ > EL1,2 , but are located spatially inside corotation for
a time T8. This means that they belong to the “hot orbital popula-
tion”. The energy range in which we find the particles in region “3”
extends over the same EJ values we have to the right of the mode in
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the histogram of Fig. 6c. However, the importance of the EJ values
increases for larger energies approaching the mode at EJ = −25650.
Since we are sampling these orbits inside corotation we mainly see
in region “3” the tips of the rhomboidal shaped oval area supported
by them, which we have already discussed in the previous section
(depicted e.g. as background in Fig. 14) close to the Lagrangian
points.

4.6 Region ”4”

The histogram with the energy distribution of the particles we find
at r > 8.2 kpc is given in Fig. 6e. The mode of the histogram is
at EJ = −25650, as is for region “3”, clearly indicating that these
two regions share to a certain degree a common orbital content.
However, as we have already noted, the most significant contribu-
tion to the structures formed in region “4” is coming from particles
with energies in the interval −27772 <EJ < −26000. The orbital
dynamics in this range has been presented in section 4.4 and orbits
with such energies that visit also the disc region beyond corotation
(Fig. 13b,c), reinforce also the outer spirals (indicated with ”B” in
Fig. 2c).

In addition, in order to investigate all possible orbits that con-
tribute to the outer spirals, we study also the dynamics at the en-
ergy of the mode, i.e. at EJ = −25650. At this energy the open-
ing in the isocontours of the effective potential around the unsta-
ble Lagrangian points is larger and this facilitates the communi-
cation between the regions inside and beyond corotation. We have
to note that it is a value close, and before, the energy of the sta-
ble Lagrangian points L4 and L5, at a region where the long-period
banana-like p.o. exist (Fig. 9).

The overall structure of the (x, ẋ) surface of section at EJ

= −25650 is similar to that of Fig. 10c. However, as we can re-
alize by inspection of Fig. 9, x1 is now stable, since EJ = −25650
corresponds to the energy indicated with the rightmost vertical line.
From Fig. 9 we conclude that apart from x1 there is, one more sta-
ble p.o., with larger x0 than x1, belonging to the family of short-
period banana-like orbits (Contopoulos & Grosbøl 1989) and two
unstable long-period banana-like p.o. As regards the pool with or-
bits available to support the outer spiral arms, it is again the chaotic
lake we encountered in smaller energies. All simple periodic orbits
we mentioned before are all located for EJ = −25650 in this area
of the surface of section, which is given in Fig. 17a together with
an asymptotic curve, which we will describe below.

In order to classify the initial conditions of the orbits on the
surface of section according to their morphology within T8 and the
way they reinforce the structures we study, we followed the same
procedure as we did in the previous cases. The question is how well
an asymptotic curve of one of the main unstable simple periodic
orbits at this energy can separate initial conditions on the surface
of section that support the structure we study, from those that do
not, when integrated for t = T8. Since x1 is stable in this energy, as
main family we consider now the unstable asymptotic curve of the
unstable long period banana-like p.o. In Fig. 9 it is located in the
upper branch of the two unstable branches of characteristic curves
intersected by the EJ = −25650 line. The results are summarized in
Fig. 17a

In Fig. 17a we plot the asymptotic curve in black colour
on top of the surface of section which is drawn with red points.
The stability islands belong to x1 (the left one) and to the short-
period p.o. (the right one). The location of the unstable periodic
orbit of the asymptotic curve is indicated with a light blue dot at
(x0, ẋ0) ≈ (3.8,−7.3). The “empty” (white) regions on the surface

of section belong to orbits that before completing an azimuthal an-
gle ϕ = π they visit regions with r > 12.5 kpc and thus we stop
integrating them, considering them as escape orbits. We observe
that the asymptotic curve occupies the largest part of the chaotic
lake. This is practically the region where the black points dominate
and there we most frequently encounter initial conditions of orbits
supporting the outer spirals, without spending much time in the
region of the disc with r < rL1,2 . The morphology of these resem-
ble the orbits in Fig. 16b for EJ = −27000. By starting integrating
chaotic orbits with initial conditions in the left part of the chaotic
lake, roughly to left of the region occupied by the asymptotic curve,
we encounter most frequently cases the 4:1-type morphologies (e.g.
similar to what we see in Fig. 13b, Fig. 16c).

We note that not all orbits starting in the part of the surface of
section depicted in Fig. 17a (roughly the chaotic lake) reinforce the
outer spirals within T8. Firstly we have the two islands of stabil-
ity containing quasi-periodic orbits around x1 (x0, ẋ0) ≈ (2.16, 31)
and around the short-period banana-like orbits at about (x0, ẋ0) ≈
(4.5,−17). These quasi-periodic orbits remain trapped around their
stable p.o. One practically adds to them the orbits from the ex-
tended sticky regions surrounding their stability islands, especially
around x1, as we observe in Fig. 17a. Such orbits are not well-
populated in the model. If they were populated they would con-
tribute to the surface density inside corotation (those around x1)
and only marginally to the outer spirals (those around the short-
period banana-like orbits), since they are located in the outer spiral
arms region, but they do not match the spiral arms morphology.

Another typical case, which includes in its morphology the
imprints of both the short- and the long-period banana-like orbits,
is given in Fig. 17b. This type of orbits exceeds 30% of the orbits
we integrated having initial conditions at the regions of the surface
of section with |x| ' 8.4.

In general the amount of hybrid morphologies, i.e. of orbits
combining features of different morphological types, is larger at EJ

= −25650 with respect to surfaces of section with smaller EJ . Such
orbits are presented in Fig. 17c,d. They can be found either in the
main region occupied by the asymptotic curve or in its tails extend-
ing to the left part of Fig. 17a. Exactly because of the large amount
of hybrid morphologies, the asymptotic curve separates less effi-
ciently parts of the surface of section, where we find a single type
morphology dominating. The blue points plotted in Fig. 17a indi-
cate the location of initial conditions of orbits supporting the outer
spirals spending also within T8 a fraction of time inside corotation
following a 4:1-type morphology. Several of them are located in the
right part of the figure, occupied by the asymptotic curve.

As a next step we investigated also in this case the orbital dy-
namics in the (y, ẏ) surface of section, since the families of p.o.
surrounding the unstable L1,2 points (PL1 and PL2) does not inter-
sect the y = 0 axis. The representatives of this families (with ini-
tial conditions (y0, ẏ0) ≈ (−10.46, 8.8) and (5.7, -9.6)) are unstable
for EJ = −25650. Orbits from their neighbourhood will drift along
their unstable eigendirections following trajectories that reinforce
the outer spirals. Statistics about the morphology of the orbits have
been carried out following an analysis similar to the one for the
(x, ẋ) surface of section and is summarized in Fig. 18a. Open sym-
bols correspond to orbits associated with a banana-like morphology
without visiting practically the disc inside corotation (Fig. 18b,c).
The chaotic regions we find in the surfaces of section communi-
cate, so starting an orbit close to L1 or L2 with EJ > EL1,2 there is
a large probability to obtain orbits with arcs at r > rL4,5 . In some
cases these orbits remain trapped for some time around L4 or/and
L5, as in the case of Fig. 18b. Orbits that spend time T8 (or a consid-
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Figure 17. (a) The unstable asymptotic curve of the banana-like p.o. located at (x0, ẋ0) ≈ (3.8,−7.3) plotted in the (x, ẋ) surface of section for EJ = −25650.
It occupies a large fraction of the “chaotic lake” area. The dark blue points indicate orbits of the hot orbital population with a 4:1 type morphology within T8.
In (b), (c) and (d) we give characteristic morphologies of the orbits at this EJ .

erable fraction of it) beyond corotation, having always during this
time r < 15 kpc, are indicated with green open circles in Fig. 18a,
while the orbits that practically escape after time less than a pattern
period, with light blue ones. Open symbols cover the largest part of
the (y, ẏ) surface of section for EJ = −25650.

Nevertheless, even in this surface of section we encounter
chaotic orbits with a 4:1-type morphology. Most of them are as-
sociated with the sticky region around the last KAM curve of the
stable x1 orbit, which has a 4:1-type morphology (like the x1 orbit
in Fig. 12, but with larger loops). The initial conditions of these or-
bits are indicated with smaller black dots, so that the sticky region
around x1 can be discernible below them (roughly around (3.5,0)
in Fig. 18a). They remain inside corotation for T8, but they will
eventually reinforce the outer spirals in later times. However, there
are also hybrid type chaotic orbits sharing a 4:1 and long-period,
banana-like morphologies within T8, as in Fig. 18c,d. In Fig. 18a
they are indicated with blue filled circular symbols.

A final interesting remark associated with the statistics of the

(x, ẋ) surface of section at EJ = −25650, is that about 25% of the
orbits we found supporting to some degree the surface density of
the outer spirals in “region 4” do not visit the immediate neigh-
bourhood of L1 or L2 within T8. Such orbits are of the morphology
of the two orbits in Fig. 19. Thus, there also orbits supporting the
outer spirals without contributing to the surface density close to L1,
L2.

5 DISCUSSION AND CONCLUSIONS

In the paper we investigated the dynamics shaping a barred-spiral
morphology in a response model that we characterized as “gen-
eral”. The “generality” refers to the contribution of mainly four,
different, dynamical mechanisms in the building of the observed
structure. They become apparent because of the chosen pattern
speed that pushes the Lagrangian points far from the ends of the
bar (Rc/Rb ≈ 2.9) and the fact that by construction our model
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Figure 18. (a) Initial conditions of orbits on the (y, ẏ) surface of section for EJ = −25650 indicated according to their morphology within T8. Open symbols
correspond to orbits associated with banana-like morphologies like in (b) and (c). Filled symbols correspond to orbits having partly a 4:1 type morphology
like the one in (d). The small black ones remain inside corotation, while the blue ones reinforce the outer spirals as well.

has enough particles at distances up to 4 times the bar radius.
This allows us to study in detail the dynamical procedures taking
place in these regions. We claim that the dynamics we present here
bridge the orbital dynamics of barred and normal (non-barred) spi-
ral galaxies.

The dynamical mechanisms we found acting in our model can
be summarized as following:

• Ordered elliptical flows. Such flows shape the bar and the
inner spirals (the strong spiral arms labelled with “A” in Fig. 2c).

The bar is formed by quasi-periodic orbits trapped around the
stable x1 p.o. (aligned roughly along the major axis of the bar) as
usual. However, in the central part of the bar, we have the formation
of a boxy structure (Fig. 4) by orbits not related to the x1 family.
This is discussed in detail elsewhere (paper II).

The ellipses of the x1 family precess beyond the region of the bar
and support the inner spirals with quasi-periodic orbits that support
an ordered, “precessing” flow (Fig. 8).
• Chaotic orbits inside corotation. In our model such orbits

(Fig. 11), in a specific energy range, reinforce the extension of the
spiral segments in region “2” (Fig. 6a). It is the second case encoun-
tered, where chaotic orbits inside corotation reinforce a structure
(the other one has been presented by Patsis et al. (2010) and refers
to the whole spiral structure of NGC 1300). Another role of these
orbits, from a wider energy range, is the filling of the lemon-shaped
disc area, which surrounds the inner barred-spiral structure.
• The “hot orbital population”. This is by far the most im-

portant class of orbits for the overall morphology of the model. It
shapes the outer spiral arms. It transfers particles from the inner
disc area (where we have the inner spirals, “A”, in Fig. 2c) to the
outer disc area, beyond corotation, (where we have the outer spi-
rals, “B”, in Fig. 2c), through the L1 and L2 “gates”. The amount
of orbits returning to the inner disc region within T8 is consider-
ably smaller than these which stay outside corotation or practically
escape.

As long as we consider chaotic orbits with EJ > E(L1,2) we con-
sider orbits that in principle will explore all the available phase
space if integrated for long enough time. However, at least for time
T8 we find that the outer spirals of the model are reinforced by
chaotic orbits that clearly include two different characteristic im-
prints in their morphology. We call them “4:1-type” and “lpb-type”
because they follow during a large fraction of T8 a morphology
resembling quasi-periodic orbits around 4:1-resonance-type orbits
and around long-period-banana-like orbits respectively.

– ”4:1-type”. This is the most common morphology of the
orbits of the hot orbital population that support the outer spi-
rals (Fig. 13b, Fig. 17d). This is expected, since such a mor-
phology for chaotic orbits inside corotation already exist for
E(L1,2) = −27772 and keeps existing for all energies we found
particles on orbits reinforcing the outer spirals. The lower the en-
ergy we find such chaotic orbits, the longer the time they spend
on the average inside corotation, contributing to the surface den-
sity of the lemon-shaped inner disc region (inside corotation).
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Figure 19. Two orbits with EJ = −25650 contributing to the surface den-
sity of the outer part of the spiral arms of our model, without visiting the
immediate neighbourhood of L1 or L2 within T8.

– ”lpb-type”. We encounter this class of chaotic orbits for EJ

' −27000, when the family of long period banana-like orbits is
introduced in the system (Fig. 16b, Fig. 17b, Fig. 18b,c). The
total amount of chaotic orbits, which support the outer spirals
showing the lpb-type imprint in their morphology within T8, is
less than that of the 4:1-type, reflecting mainly the energy range
in which we find each of them. However, with increasing energy,
increases also the number of encountered hybrid morphologies
(Fig. 16c, Fig. 17c, Fig. 18d). Finally such orbits contribute to
the slight expansion of the inner, lemon-shaped, disc region to
its sides (along the x-axis) and to the shaping of its outer border
(Fig. 14).

A structure supported by quasi-periodic orbits, can be as-
signed to a family of stable p.o. with a specific morphology differ-
ent in general from the morphology of the structure), that plays the
role of its backbone. Intuitively, this cannot be done with a fam-
ily of unstable p.o. and the chaotic orbits around them. Since we
speak about chaotic orbits, we deal with orbits that share a com-
mon available phase space. In that sense it is unlikely to explain
the reinforcement of a “chaotic” spiral structure (as the outer spiral
arms in our model) by orbits along the asymptotic curve associated
with the unstable orbits of a single family of p.o. (e.g. the PL1 and
PL2 families). As correctly Tsoutsis et al. (2008) remark, it is a
“coalescence of invariant manifolds” that leads to the formation of
“chaotic” spirals. Nevertheless, statistics on the energies of the par-
ticles found in the arms and classification of the morphologies of
their orbits point to two main classes of orbits, ”4:1-type” and “lpb-
type”, which we mentioned above. Motivated from the morphology
of the two prevailing patterns, we investigated the relation between
the shape of the unstable periodic orbits that could be considered as
a coarse shape of each of the two patterns (4:1-type and lpb-type)
and the morphologies we find by integrating orbits along their un-
stable eigendirections. For energies close to E(L1,2) we find a close
relation, because at these energies the vast majority of the particles

that cross the L1 and L2 “gates” have a “4:1-type” past. The region
where we find orbits supporting the chaotic spirals is occupied to
a large extend by the unstable asymptotic curve of the 4:1-like un-
stable x1 p.o. (Fig. 15). For larger energies this relation becomes
more vague, as we encounter a larger amount of orbits with hybrid
morphologies in the area occupied by the asymptotic curve of the
lpb p.o. (Fig. 17). At any rate the orbits we find primarily along the
asymptotic curves of the x1 p.o. at the 4:1 resonance and L1,2 ener-
gies, and secondarily the orbits along the asymptotic curves of the
lpb p.o. at larger energies, give the morphologies of the orbits sup-
porting the outer spirals of our model. Thus, they can be considered
as the backbones of outer spiral arms structure.

We note that the largest part of the spiral arms extending be-
yond L1 and L2 (part “B” in Fig. 2) can be approximated by a log-
arithmic spiral about 20◦. These arms are formed in a chaotic en-
vironment by means of an alternative mechanism of building spiral
arms with pitch angles in this range, besides the one proposed by
Pérez-Villegas et al. (2012) in models for normal spirals.

Practically, the “4:1-type” orbits are orbits of the same kind
that form also the “chaotic” spirals in the case of the NGC 4314
model in Patsis (2006), which in turn are the same chaotic orbits
building the envelope of the bar in the same potential in Patsis
et al. (1997). In the present case the envelope of the bar of the
NGC 4314 model corresponds to the lemon-shaped disc region,
which surrounds the barred-spiral structure. This is a consequence
of the Rc/Rb = 2.9 ratio we have in the model. Pushing the L1,2

points away from the ends of the bar we allow the coexistence of
two different dynamical mechanisms acting in the same model and
support two pairs of spiral arms. Such double spirals exist in some
cases of grand design galaxies with morphologies that resemble
that of our model. Two examples are NGC 1566 and NGC 5248.
Their DSS images are given in Fig. 20. Despite the fact that our
model does not refer explicitly to these galaxies and although op-
tical images are a combination of many physical parameters (dust
attenuation, population effects etc., see Zibetti et al. (2009)) the
observed overall morphology is to some degree indicative of the
underlying dynamics. The images have not been corrected for pro-
jection effects, however they are face-on enough so that we can
identify the features we discuss. We have used appropriate look-
up-tables and values for the contrast of the images and we have
flipped the images so that the spirals have similar orientation with
the models in Fig. 2 , in order to facilitate the comparison. The
outer spirals are very weak features in NIR images of these galax-
ies (for NGC 1566 see Grosbøl & Dottori (2012)) indicating that
they are consisting mainly of young objects and gas. This is in
agreement with our finding that “chaotic” spirals are features en-
hanced in gaseous models (Tsigaridi & Patsis 2010; Patsis 2012).
There is a conspicuous correspondence between the morphological
characteristics of these two galaxies and the features developed in
our models (Fig. 2). The two sets of spirals, inner and outer, are
labelled again with “A” and “B” as in Fig. 2. The lemon-shaped in-
ner disc region is emphasized in Fig. 20a by the outermost of the
drawn isophotes, while in Fig. 20b it extends inside the dark en-
velope around a white region surrounding the inner barred-spiral
pattern. According to our models, the approximate location of L1

and L2 in the systems depicted in the images of the galaxies would
be close to the drawn white filled circles, just at the beginning of
the outer spiral arms. In conclusion, the two galaxies reproduce
in an archetypical way the double mechanism that leads to the in-
ner spiral structure supported by regular orbits (as in the case of
normal spirals) and the outer “chaotic” spirals (as in the case of
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Figure 20. Optical (red) DSS images of (a) NGC 1566 and (b) NGC 5248. The correspondence of their morphologies with the structure of our model (Fig. 2)
is apparent.

barred-spirals). In that respect they can be considered as bridging
the dynamics of the two types of spiral galaxies.

Different kinds of barred-spiral response morphologies are de-
veloped in models with different pattern speeds as the result of the
action of only some of these mechanisms. These models, and spe-
cial dynamical features characterizing them, are presented in sub-
sequent papers.
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Gómez C. 2006, A&A 453, 39
Tsigaridi L., Patsis P.A., 2010, in “Advances in Hellenic Astron-

omy during the IYA09”, ASP Conf. Ser. Vol. 424, K. Tsinganos,
D. Hadzidimitriou, T. Matsakos (eds), pp.382-383

Saha K., Naab Th., 2013, arXiv:1304.1667
Tsigaridi L., Patsis P.A., 2013b, in preparation (Paper II)
Tsoutsis P., Efthymiopoulos C., Voglis N., 2008, MNRAS 387,

1264
Tsoutsis P., Kalapotharakos C., Efthymiopoulos C., Contopoulos

G., 2009, A&A 495, 743

c© 0000 RAS, MNRAS 000, 000–000



The backbones of stellar structures 19

de Vaucouleurs G., de Vaucouleurs A., Corwin H. G. Jr, et al.
1991,“Third Reference Catalogue of Bright Galaxies” (RC3),
Springer, NY

Voglis N., Stavropoulos I., 2005, in “Recent advances in Astron-
omy and Astrophysics”, N. Solomos (ed), AIP Conference Pro-
ceedings, Volume 848, pp. 647-659

Voglis N., Stavropoulos I., Kalapotharakos C., 2006, MNRAS
372, 901

Zhang X., Buta R., 2007, AJ 133, 2584
Zibbeti S., Charlot S., Rix H-W. 2009, MNRAS 400, 1181

c© 0000 RAS, MNRAS 000, 000–000


